
Adversarial Attacks on Link Prediction Algorithms
Based on Graph Neural Networks

Wanyu Lin

University of Toronto

wanyu.lin@mail.utoronto.ca

Shengxiang Ji

University of Toronto

shengxiang.ji@mail.utoronto.ca

Baochun Li

University of Toronto

bli@ece.toronto.edu

ABSTRACT

Link prediction is one of the fundamental problems for graph-

structured data. However, a number of applications of link predic-

tion, such as predicting commercial ties or memberships within a

criminal organization, are adversarial, with another party aiming

to minimize its effectiveness by manipulating observed informa-

tion about the graph. In this paper, we focus on the feasibility of

mounting adversarial attacks against link prediction algorithms

based on graph neural networks. We first propose a greedy heuris-

tic that exploits incremental computation to find attacks against

a state-of-the-art link prediction algorithm, called SEAL. We then

design an efficient variant of this algorithm that incorporates the

link formation mechanism and Υ-decaying heuristic theory to de-

sign more effective adversarial attacks. We used real-world datasets

and performed an extensive array of experiments to show that the

performance of SEAL is negatively affected by a significant margin.

More importantly, our experimental results have shown that our ad-

versarial attacks mounted based on SEAL can be readily transferred

to several existing link prediction heuristics in the literature.

CCS CONCEPTS

• Security and privacy → Network security.

KEYWORDS

Adversarial Attacks; Graph Neural Networks; Link Prediction

ACM Reference Format:

Wanyu Lin, Shengxiang Ji, and Baochun Li. 2020. Adversarial Attacks on

Link Prediction Algorithms Based on GraphNeural Networks. In Proceedings
of the 15th ACM Asia Conference on Computer and Communications Security
(ASIA CCS ’20), October 5–9, 2020, Taipei, Taiwan. ACM, Taipei, Taiwan,

11 pages. https://doi.org/10.1145/3320269.3384750

1 INTRODUCTION

Link prediction refers to the problem of identifying the existence

of a link between two nodes in a network [22]. It is an important

problem with practical applications in a diverse set of research

This research was supported in part by the NSERC Discovery Research Program.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

ASIA CCS ’20, October 5–9, 2020, Taipei, Taiwan
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6750-9/20/06...$15.00.

https://doi.org/10.1145/3320269.3384750

fields, including friend recommendation in social networks [14],

prediction and ranking algorithms in complex networks (e.g., co-

authorship graphs) [25], and criminal networks [7]. In criminal

networks, for example, links between entities indicate that po-

tential connections between these entities exist, such as having

commercial ties or memberships in the same criminal organization.

These potential links provide useful underlying information about

network structures, and may be readily detected by link prediction

algorithms.

A large number of link prediction algorithms have been intro-

duced in the literature. Existing approaches can be categorized into

two classes. The first is heuristic methods which use predefined

similarity functions to measure the likelihood of links [2, 17, 19, 22].

Although they worked well in practice, these heuristics make strong

assumptions on when links may exist, and none of them performs

consistently well across all complex networks [22]. The second

is learning-based methods, which automatically learn a mapping

function from the network [3, 31, 33, 34]. Specifically designed

for graph-structured data, graph neural networks have shown to

achieve state-of-the-art performance when solving link prediction

problems [34].

However, as effective as they may be, recent studies have shown

that neural networks, in general, are vulnerable to malicious adver-

saries, who are able to craft specific sets of adversarial examples so
that neural network models will generate desired outputs of their

choice. Typically, these selected adversarial inputs are derived from

regular inputs by introducing minor — yet carefully selected — per-

turbations. Such adversarial attacks have been widely demonstrated

with high success rates in the contexts of image recognition [8] and

malware detection [15]. Interestingly, it remains unclear how effec-

tive such adversarial attacks may be for link prediction algorithms

based on graph neural networks.

Adversarial perturbations on the graphs underlying complex

networks, especially on social networks, are easily conceivable and

quite common in practice. As link prediction may reveal connec-

tions which associated parties prefer to keep hidden – either for

the sake of profit, or to evade the law enforcement. For example,

in online recommendation systems, fraudsters frequently manip-

ulate online reviews to affect reader opinion in recommendation

networks [12]. In a criminal network, criminals may try to hide

their links to bypass the detection of criminal groups [7, 23].

In order to systematically study the ability of an “adversary"

to manipulate link prediction, we mount adversarial attacks on

link prediction via applying existing evasion attacks in adversarial

machine learning. For this purpose, we first formulate the problem

of crafting adversarial examples to deceive GNN-based link predic-

tion models as an optimization problem. In particular, we focus on

evasion attacks against a state-of-the-art link prediction algorithm,

https://doi.org/10.1145/3320269.3384750
https://doi.org/10.1145/3320269.3384750

called SEAL [34], which learns missing/unobserved links from lo-

cal enclosing subgraphs. Essentially, SEAL is proposed based on

a Υ-decaying heuristic theory, which shows that graph structure

features can be well approximated from the local subgraphs and

is able to unify a wide range of heuristics in a single framework.

In this regard, we can envision that the mounted attacks may be

transferred to the heuristics which can be well incorporated into

the Υ-decaying heuristic framework.

Attacking the graph in a complex network effectively involves

several non-trivial challenges. First, due to the inherent learning

characteristics of SEAL, our problem of crafting perturbations on

graph data contains dependent variables as the adjacency matrix

and node information matrix are coupled, and existing solutions

of gradient-based approaches are not applicable. Second, unlike
existing adversarial attacks in the domain of image recognition [8]

consisting of continuous data, graph-structured data are typically

discrete.With the data’s discreteness and the large number of model

parameters of SEAL, solving the optimization problem for a com-

plex network graph is highly challenging. Finally, adversarial per-
turbations — such as adversarial images in the context of image

recognition — should not be noticeable by humans in general. Yet,

in complex network graphs, the notion of “unnoticeable changes”

needs to be clearly defined first.

Inspired by Zugner et al. [37], we first propose a greedy heuristic
that perturbs the network graph incrementally by manipulating

the graph structure. We then propose an efficient variant that uti-

lizes the link formation mechanism and the Υ-decaying heuristic
theory. To validate the effectiveness of our crafted attacks, we use

real-world datasets to perform an extensive array of experiments.

Our results have shown convincing evidence that the performance

of link prediction in SEAL has been negatively affected by a signifi-

cant margin using our adversarial attack, even with very limited

knowledge of complex network graphs. More importantly, our ex-

perimental results have also shown that our adversarial attack can

be readily transferred to several link prediction heuristics in the

literature.

The remainder of this paper is organized as follows. We first

present some preliminary background in Sec. 2. Our attack model

and problem formulation are introduced in Sec. 3. In Sec. 4, we

present the details of our algorithm designed to craft adversarial

examples for link prediction effectively and efficiently. In Sec. 5,

we present an extensive array of experimental results to evaluate

the performance of our approach. Sec. 6 discusses related work and

Sec. 7 concludes this paper.

2 PRELIMINARIES

Throughout this paper, we consider link prediction task in a single

large graph. Formally, let G = (V, E) be an undirected graph,

where V = {𝑣1, 𝑣2, · · · , 𝑣𝑁 } is the set of nodes, and E ⊆ V ×V
is the set of observed links/edges. Its observed global adjacency

matrix is A, where A𝑖, 𝑗 = 1 if (𝑖, 𝑗) ∈ E and A𝑖, 𝑗 = 0 otherwise.

For any nodes 𝑥,𝑦 ∈ V , let Γ(𝑥) be the 1-hop neighbors of 𝑥 , Γ𝑑 (𝑥)
be the set of nodes whose distance to 𝑥 is shorter than or equal to

𝑑 , 𝑑 = 1, 2, · · · and 𝑑 (𝑥,𝑦) be the shortest path distance between 𝑥

and 𝑦. Given two nodes 𝑥,𝑦 ∈ V , the ℎ-hop enclosing subgraph

for (𝑥,𝑦) is the subgraph that induced from G by the set of nodes

Γℎ (𝑥) ∪ Γℎ (𝑦).
Given a graph containing a set of observed links, the goal of link

prediction is to learn a function 𝐹 : V ×V → C that maps the link

existence between two given nodes (𝑥,𝑦) ∈ V ×V to a class 𝑐 in

C = {0, 1}, where 𝑐 = 0 implies that the link does not exist (called a

negative link), and 𝑐 = 1 implies that the link exists (called a positive
link). For clarity, the link to be predicted is called the target link
throughout this paper.

2.1 Heuristics for Link Prediction

A large category of link prediction algorithms is based on some

heuristics that compute the proximity between nodes to predict

whether they are likely to have a link. In this category, each heuristic

is predefined and has a strong assumption on when two nodes are

likely to have a link. Popular heuristics including common neigh-

bors (CN), Jaccard [20], preference attachment (PA) [4], Adam-Adar

(AA) [2], resource allocation (RA) [36], Katz index [19], PAGER-

ANK [6], and SimRank [17]. Table 1 summarizes eight popular

heuristics and associated heuristic formula, which will be used to

analyze the transferability of our mechanisms. Note that due to

the large literature, we could not analyze to every heuristic, but to

some popular ones.

Table 1: Popular Heuristics for Link Prediction

Algorithm Heuristic Formula

common neighbors (CN) |Γ (𝑥) ∩ Γ (𝑦) |
Jaccard [20]

|Γ (𝑥)∩Γ (𝑦) |
|Γ (𝑥)∪Γ (𝑦) |

preference attachment (PA) [4] |Γ (𝑥) | × |Γ (𝑦) |
Adam-Adar (AA) [2]

∑
𝑧∈Γ (𝑥)∩Γ (𝑦)

1

log |Γ (𝑧) |

resource allocation (RA) [36]

∑
𝑧∈{Γ (𝑥)∩Γ (𝑦) }

1

|Γ (𝑧) |

Katz index [19]

∑∞
𝑙=1

𝛽𝑙 |𝑝𝑎𝑡ℎ (𝑥, 𝑦) = 𝑙 |
PAGERANK [6] 𝑞𝑥𝑦 + 𝑞𝑦𝑥
SimRank [17] 𝛾

∑
𝑎∈Γ (𝑥)

∑
𝑏∈Γ (𝑦) 𝑠𝑐𝑜𝑟𝑒 (𝑎,𝑏)

|Γ (𝑥) |×|Γ (𝑦) |

Note: Γ (𝑥) and Γ (𝑦) denote the sets of 𝑥 and 𝑦’s one-

hop neighboring nodes, respectively; 𝛽 is a damping factor;

|𝑝𝑎𝑡ℎ (𝑥, 𝑦) = 𝑙 | represents the number of length-𝑙 paths

between nodes 𝑥 and 𝑦; 𝑞𝑥𝑦 is the station probability dis-

tribution of 𝑦 under the random walk from 𝑥 .

2.2 Graph Neural Networks

Graph neural networks (GNNs) represent a new type of neural

networks that are capable of learning from graphs. A graph neural

network for graph classification typically consists of two main com-

ponents: graph convolutional layers that extract local substructure

features for individual nodes, and a graph aggregation layer that

aggregates node-level features into a graph-level feature vector.

Deep graph neural networks (DGNN) are GNNs equipped with

propagation-based graph convolution layers. They have been shown

to achieve state-of-the-art graph classification performance on var-

ious benchmark datasets [35]. The aggregation layer in a DGNN

is a SortPooling layer, which sorts the final node states to obtain

an isomorphism invariant node ordering, and enables a traditional

1-D convolutional neural network on the node sequence. Its last

layer is a fully-connected layer followed by a log-softmax layer.

2.3 The SEAL Framework

In this paper, we focus on the problem of crafting adversarial exam-

ples for link prediction based on graph neural networks. In particu-

lar, we consider a state-of-the-art link prediction framework, called

SEAL [34], which learns heuristics from local enclosing subgraphs

using a graph neural network. The foundation of this framework

is a Υ-decaying heuristic theory, which shows that local enclosing

subgraphs reserve rich information for link existence prediction.

Particularly in [34], Zhang et al. proposed a Υ-decaying heuristic
theory that is able to unify a wide range of heuristics in a single

framework, and proved that several existing heuristics, including

Katz index [19], PAGERANK [6], and SimRank [17] can be well ap-

proximated from local enclosing subgraphs. The Υ-decaying heuris-
tic for (𝑥,𝑦) has the following form:

H(𝑥,𝑦) = 𝜂

∞∑
𝑙=1

Υ𝑙 𝑓 (𝑥,𝑦, 𝑙) (1)

where Υ ∈ (0, 1) is a decaying factor, 𝜂 > 0 is either a constant or

a function of Υ bounded by a constant, 𝑓 is a nonnegative function

under the given network.

The Υ-decaying heuristic theory for link prediction:Given

a Υ-decaying heuristic, if 𝑓 (𝑥,𝑦, 𝑙) satisfies the following two con-

ditions:

• 𝑓 (𝑥,𝑦, 𝑙) ≤ 𝜆𝑙 where 𝜆 < 1

Υ ;

• 𝑓 (𝑥,𝑦, 𝑙) can be achieved from the ℎ-hop subgraph of (𝑥,𝑦)
for 𝑙 = 1, 2, 3, . . . , 𝑔(ℎ), where 𝑔(ℎ) = 𝑎ℎ + 𝑏, 𝑎, 𝑏 ∈ N , 𝑎 > 0.

Then the Υ-decaying heuristic for (𝑥,𝑦) can be approximated

from the ℎ-hop enclosing subgraph of (𝑥,𝑦) and the approximation

error decreases at least exponentially with ℎ.

Following this theory, as illustrated in [34], several existing

heuristics inherently share the same Υ-decaying heuristic form,

which implies that from the small enclosing subgraphs extracted

around links, it is able to approximate a wide range of heuristics

with small errors.

In this regard, the SEAL framework is designed to automatically

learn a ‘heuristic’ function that maps local enclosing subgraph pat-

terns to link existence instead of using predefined ones. It contains

three stages: extracting an ℎ-hop local subgraph, either for a train-

ing or a testing link; constructing the node information matrix (𝑋)

for each link, and then learning with a graph neural network. The

input of the graph neural network consists of (𝐴,𝑋) tuples, where
𝐴 represents the adjacency matrix of the subgraph, and the output

of the graph neural network consists of link labels 𝑐 . The optimal

model parameters𝑊 are learned by minimizing the cross-entropy

on the output of the training links. At test time, the link existence

of two nodes then can be predicted by applying the trained SEAL

model.

For clarity, let’s see a running example as illustrated in Fig. 1. In

this example, the SEAL framework learns the ‘heuristic’ function

using 1-hop enclosing subgraphs. The learned heuristic may contain

information about its graph structure features, such as the number

Enclosing
subgraph
extraction

Learn graph
structure features:

common
neighbours

Jaccard
Katz
…

c=1

A

B

C
D C

D

A

B

Graph Neural Network

c=0

Figure 1: The SEAL framework: learning graph structure fea-

tures from 1-hop local enclosing subgraphs: (𝐴, 𝐵) and (𝐶, 𝐷)
are links with labels and regarded as training links.

of common neighbours, Jaccard, and Katz index, etc. (𝐴, 𝐵) and
(𝐶, 𝐷) are the links with labels and regarded as training links.

Essentially, the node information matrix 𝑋 contains information

about each node, including the structural node labels, embeddings,

or node attributes. As the structural node label is used to mark

the different roles (topological structure) of nodes in an enclosing

graph, it is a kind of graph structural feature. By incorporating the

node information matrix, SEAL can learn the mapping function

from its graph structure and node attributes. Our work focuses on

mounting adversarial attacks on link prediction algorithms based

on graph neural network, particularly targeting the link prediction

algorithm in SEAL. We assume that the link prediction model is

trained with graph data that is clean and attack-free.

2.4 Attack Transferability

Existing work in the literature on adversarial machine learning

demonstrated that adversarial examples produced to mislead a spe-

cific model are highly likely to mislead other models; such property

is referred to as transferability. A practical impact of this property

is that it leads to oracle-based black-box attacks. More specifically,

the adversary is able to use the target model as an oracle to label a

synthetic training set for the surrogate, so the adversary need not

even observe the full data to mount the attack [21, 26].

The transferability of adversarial machine learning has been

extensively studied in the literature [26, 27, 29]. In this paper, the

definition of transferability is more general and not only limited

among machine learning models. Note that, we aim to offer a com-

prehensive algorithmic investigation of the problem of attacking

link prediction algorithms based on graph neural networks. For

this purpose, we focus on evasion attacks against a GNN-based

framework, called SEAL, which is proposed based on a Υ-decaying
heuristic theory. Regarding the Υ-decaying heuristic framework,

we can envision that the mounted attacks may be transferred to

the heuristics.

To illustrate the effectiveness of our attacks, we will empirically

analyze their transferability to existing heuristics in Sec. 5.

3 PROBLEM FORMULATION

In this section, we will describe our threat model and explain our at-

tacks as modifications to a graph. In practice, the adversary changes

the graph based on the underlying data that are explored for the

perturbations

E F

Enclosing
subgraph
extraction

Learn graph
structure features:

common
neighbours

Jaccard
Katz
…

c=0

Trained Graph Neural Network

c=1
?E F

?E F

Figure 2: Small perturbations on the graph lead towrong pre-

diction of the target link by SEAL: ((𝐸, 𝐹) is a testing link

without knowing its label).

prediction of missing (or unobserved) links. For example, in crimi-

nal networks, the adversary aims to hide connections between the

entities to avoid being detected in criminal investigations.

3.1 Notations

An undirected graph G is defined by the sets of nodesV and edges

E. G is such a graph that represents the underlying data — a de-

fender analyses the missing links based on its observed information

(e.g., observed graph structure, etc).

Often when applied, a defender learns a prediction model —

described as 𝐹 in Sec. 2 — according to its observed graph and seeks

to predict the link existence 𝑒 (𝑥,𝑦) given any two target nodes

𝑥,𝑦 ∈ V . In this paper, an adversary controls an attacker subset

𝑉𝑠 ∈ V . The adversary is capable of accessing and performing

perturbations on this subset within a graph G = (V, E), leading
to the graph G′ = (V ′, E ′), such that the link prediction model

learned is fooled.

3.2 Threat Model

Before describing the adversary’s knowledge, we first discuss the

knowledge that is available to the adversary. We assume that the

adversary has an active infection set to manipulate, or 𝑉𝑠 ∈ V .

This reflects the real-world situation that some of the links are

intensively monitored and can be easily detected if an attack occurs.

On the other hand, the adversary has full knowledge of the

link prediction algorithms, including the generation of the node

informationmatrix, as well as its learning algorithm. In other words,

we assume in this paper that the adversary has complete access to

the graph neural networks, including the architecture and model

parameters, and can use them in a white-box manner. This is a

conservative and realistic assumption: due to the transferability
property as illustrated in Sec. 2.4, it is possible to train a surrogate

model given black-box access to a target model, and by attacking

the surrogate model, the adversary can transfer the attacks to the

target [21, 26].

As in the literature [37], we also assume that the adversary has

perfect knowledge of the graph G, obtained from the defender.

Given the full dataset and the knowledge of the modeling process,

the adversary can completely reconstruct the link prediction results

as the defender does to evaluate the effectiveness of their attacks.

Ideally, this data would be well guarded, making this level of knowl-

edge only realistic for the most sophisticated adversaries. Never-

theless, considering the damage that could be done by a perfectly

knowledgeable adversary is important as a security evaluation,

since it allows us to find potential weaknesses in link prediction

models.

Our attack architecture is shown as Fig. 2. During the testing

phase, a testing link (𝐸, 𝐹) is predicted as a negative link, while with
a perturbation (adding an edge denoted as a blue link in Fig. 2), it is

predicted as a positive link. Since 𝑋 contains information about a

node, including node structural labels, manipulating perturbations

on the graph structure (adding or deleting edges) would lead to

changes in both 𝐴 and 𝑋 (coupled variables while performing per-

turbations). Without loss of generality, attacks induced by adding

or deleting edges are referred to as graph structure attacks. Directly
manipulating the target link is easy to be detected; thus we also

assume that the adversary would not add or delete an edge between

the target nodes. To summarize, as the inputs of the prediction

model are (𝐴,𝑋) tuples representing the enclosing subgraph of two

given target nodes 𝑥 and 𝑦, perturbations causing changes on 𝐴

and 𝑋 may lead to an incorrect prediction of the target link 𝑒 (𝑥,𝑦).

3.3 Unnoticeability Constraint

In typical application domains, a successful adversarial example is

crafted under some simple constraints to ensure its unnoticeability.

For example, in the image recognition domain, the perturbation con-

straint is measured by the distance (𝑙0, 𝑙1, 𝑙2, 𝑙∞-norm, etc.) between

the adversarial example and its normal example. Its effectiveness

can be easily verified by human vision [8, 11]. However, in a com-

plex network graph, manipulating the input data to fool its learning

model is much harder.

To quantitatively evaluate unnoticeability, we use the perturba-

tion constraint measured by 𝑙1-norm distance of the graph adja-

cency matrices before and after perturbations. It can be formulated

as:

|𝐴 −𝐴′ | ≤ Δ (2)

where𝐴,𝐴′ are the adjacency matrices of the subgraphs before and

after perturbations. It sets the maximum bound that the adversary

can change the graph, and with this constraint it is more likely to

satisfy the unnoticeability constraint.

Instead of verifying by human vision, we employ the graph

property preservation technique to ensure its unnoticeable pertur-

bations, which has been discussed by Zugner et al. [37]. Precisely,
we use degree distribution preservation to ensure unnoticeable

perturbations in the graph — likelihood ratio test for the power-law

degree distribution of the two graphs [37]. The intuition is that two

highly similar graphs would follow similar power-law behaviour

regarding their degree distributions. According to [37], the graph

structure perturbations G′ = (V ′, E,X′) can be accepted only

when the degree distribution satisfies:

Λ(G (0) ,G′) < 𝜏 ≈ 0.004 (3)

where Λ denotes the log-likelihood ratio test statistic according to

the graphs’ power-law degree distributions; it follows a 𝜒2 distri-

bution with one degree of freedom. 𝜏 is approximated using the

critical 𝑝-value setting in the 𝜒2 distribution.

3.4 Attacks as an Optimization Problem

As is commonly done on evasion attacks in other application do-

mains, such as image [8] and audio [9], we formulate the problem

of generating adversarial perturbations for the link prediction task

as follows: given any two target nodes 𝑥,𝑦, we solve the following

problem:

maximize

(𝐴′,𝑋 ′)
𝐹 (𝐴′, 𝑋 ′)𝑐′ − 𝐹 (𝐴′, 𝑋 ′)𝑐

subject to |𝐴 −𝐴′ | ≤ Δ

Λ(G (0) ,G′) < 𝜏 ≈ 0.004

(4)

where 𝐹 is the pre-trained model that the adversary aims to fool,

𝐹 (𝐴′, 𝑋 ′) is the output of the log-softmax layer of the graph neural

network, G (0) represents the initial graph, (𝐴,𝑋) and (𝐴′, 𝑋 ′) de-
note the enclosing subgraphs of the target nodes (𝑥,𝑦) extracted
from G (0) and G′, respectively. 𝑐 and 𝑐 ′ indicate the predicted la-

bels of 𝑒 (𝑥,𝑦) before and after perturbations. For simplicity, we use

𝑓 (𝐴′, 𝑋 ′) to represent the loss function {𝐹 (𝐴′, 𝑋 ′)𝑐′ − 𝐹 (𝐴′, 𝑋 ′)𝑐 },
which is designed to measure how close (𝐴′, 𝑋 ′) is to a successful

attack.

4 GENERATING ADVERSARIAL ATTACKS

Solving the optimization problem as illustrated in Sec. 3.4 is non-

trivial. While the optimization-based problem for adversarial at-

tacks has been addressed in the literature using gradient-based

computations [8, 9, 15], these existing solutions are not applicable

in our case.

Except for its discreteness property and non i.i.d of the graph

data, the perturbation variables used to optimize the objective func-

tion are not independent. Precisely, as discussed in Sec. 2.3, the

node information matrix contains the node structural label, which

is one kind of graph structural features. With a graph structure

attack, not only the adjacency matrix but also the node information

matrix would be changed, which implies that perturbations on 𝐴

and 𝑋 are coupled variables in our problem.

In this section, we will describe the algorithms that we use to

overcome the challenges of crafting adversarial examples to fool

the link prediction model. In particular, the goal of generating

adversarial examples in the complex network graph is tomislead the

SEAL framework, causing the link predicted results to be incorrect.

4.1 Greedy Graph Structure Perturbation

To cope with data discreteness and variable dependencies, we adopt

a locally optimal strategy that perturbs the graph one at a time

using an optimal way to manipulate the graph structure (by adding

or deleting an edge). To be unnoticeable, the total perturbation

magnitude is limited by Δ as shown in Eq. (2).

For each particular perturbation, we select the one that can

achieve the maximum loss function as Eq. (4), from its current

feasible graph structure perturbation space — 𝑆𝑠𝑡𝑟𝑢𝑐𝑡 (constructed

based on Alg. 1 or Alg. 2 which will be explained later). After

Algorithm 1 Greedy Graph Structure Perturbation (GGSP)

1: Input: Graph G (𝑡) (V (𝑡) , E (𝑡)), ℎ-hop subgraph 𝐺
(𝑡)
𝑥𝑦 .

2: 𝑆𝑠𝑡𝑟𝑢𝑐𝑡 ← ∅;
3: for ∀𝑢 ∈ Γℎ−1 (𝑥) ∪ Γℎ−1 (𝑦); do
4: for ∀𝑣 ∈ 𝑉𝑠 ; do
5: if 𝑒 (𝑢, 𝑣) = 1 and Λ(G (𝑡) ,G (𝑡) − 𝑒 (𝑢, 𝑣)) < 0.004 then

6: G′ ← G (𝑡) − 𝑒 (𝑢, 𝑣);
7: 𝑆𝑠𝑡𝑟𝑢𝑐𝑡 ← 𝑆𝑠𝑡𝑟𝑢𝑐𝑡 ∪ {G′};
8: else if 𝑒 (𝑢, 𝑣) = 0 and Λ(G (𝑡) ,G (𝑡) + 𝑒 (𝑢, 𝑣)) < 0.004

then

9: G′ ← G (𝑡) + 𝑒 (𝑢, 𝑣);
10: 𝑆𝑠𝑡𝑟𝑢𝑐𝑡 ← 𝑆𝑠𝑡𝑟𝑢𝑐𝑡 ∪ {G′};
11: end if

12: end for

13: end for

14: Return: 𝑆𝑠𝑡𝑟𝑢𝑐𝑡

each effective perturbation, the enclosing subgraph of the target

nodes is changed and requires to be re-extracted from the perturbed

graph. With this renewed subgraph, a new pair of (𝐴(𝑡)𝑥𝑦 , 𝑋
(𝑡)
𝑥𝑦) is

generated as the current state of the subgraph and would be the

input of the next perturbation. The graph structure perturbation

would terminate either due to a successful attack (𝑓 (𝐴′, 𝑋 ′) > 0)

or the maximum perturbation constraint Δ.
As we mentioned above, the variables (𝐴′, 𝑋 ′) that are used

to optimize the loss function, regarding the structure attack, are

dependent. Thus, the typical approaches of using gradient-based

search for each perturbation are not applicable in our case. To solve

Eq. (4) with dependent variables, the most intuitive way to construct

𝑆𝑠𝑡𝑟𝑢𝑐𝑡 is to employ a heuristic search under its unnoticeability

constraint (see line 5 and 8 in Alg. 1).

According to the Υ-decaying heuristic theory [34], given two

target nodes, their ℎ-hop enclosing subgraphs are very informa-

tive for link prediction, which means the perturbations are likely

feasible when they lead to changes on its subgraph; ℎ = 1 or 2

is typically sufficient for accurate link prediction. Hence, we only

have to inspect the optimal perturbations that can make changes

to the ℎ-hop subgraph. In other words, at least one end of the edge

added/deleted should be included in the enclosing subgraph to be a

possible feasible perturbation. Precisely, one end of the perturbed

edge should be included in its set of (ℎ − 1)-hop nodes, denoted as

{Γℎ−1 (𝑥) ∪ Γℎ−1 (𝑦)} (see Alg. 1).
Let’s see an example with ℎ = 2 as shown in Fig. 3. 𝑥,𝑦 are the

target nodes and the link in between is requested for link existence

prediction. As shown in Fig. 3, only when one end of edge added/

deleted (the blue lines) is included in their 1-hop node set (1-hop

neighbours of 𝑥/ 𝑦), the perturbations can lead to changes to the

subgraph. However, the ends of the perturbed edges (the red lines)

are not in their 1-hop node set (not 1-hop neighbours of 𝑥/ 𝑦), could

not change the subgraph.

The search time complexity inAlg. 1would beO(|𝑉𝑠 |×(|Γℎ−1 (𝑥) |+
|Γℎ−1 (𝑦) |)), where |𝑉𝑠 | is the number of nodes that the adversary

is able to manipulate and it can reach 𝑁 as the capability of the

adversary increases. With rapidly growing volumes of data, the size

of the graph (𝑁) is typically very large; for example, there were

x y?x y?

Enclosing subgraph
extraction

Figure 3: An illustration of effective edge perturbations: add

perturbations in its global graph (left) and corresponding ef-

fects in its subgraph (right), where the red edges denote the

ineffective perturbations, the blue edges indicate the effec-

tive perturbations, bold dash lines represent edge deletion,

and bold solid lines denote addition.

Algorithm 2 Optimized Graph Structure Perturbation (OGSP)

1: Input: Graph G (𝑡) (V (𝑡) , E (𝑡)), ℎ-hop subgraph 𝐺
(𝑡)
𝑥𝑦 .

2: 𝑆𝑠𝑡𝑟𝑢𝑐𝑡 ← ∅;
3: if 𝐹 (𝐴(0)𝑥𝑦 , 𝑋

(0)
𝑥𝑦) = 1 then

4: //decrease common neighbours

5: for {∀𝑢, 𝑣 ∈ 𝑉𝑠 ∩ {Γℎ (𝑥) ∩ Γℎ (𝑦)}} ∧ {𝑒 (𝑢, 𝑣) = 1} do
6: if Λ(G (𝑡) ,G (𝑡) − 𝑒 (𝑢, 𝑣)) < 0.004 then

7: G′ ← G (𝑡) − 𝑒 (𝑢, 𝑣);
8: 𝑆𝑠𝑡𝑟𝑢𝑐𝑡 ← 𝑆𝑠𝑡𝑟𝑢𝑐𝑡 ∪ {G′};
9: end if

10: end for

11: //increase common neighbours

12: else

13: for ∀𝑢 ∈ 𝑉𝑠 ∩ {Γℎ (𝑥)/Γℎ (𝑦)} ∧ 𝑣 ∈ {Γℎ−1 (𝑦)/Γℎ (𝑥)}; do
14: if Λ(G (𝑡) ,G (𝑡) + 𝑒 (𝑢, 𝑣)) < 0.004} ∧ (𝑢, 𝑣) ≠ (𝑥,𝑦) then
15: G′ ← G (𝑡) + 𝑒 (𝑢, 𝑣);
16: 𝑆𝑠𝑡𝑟𝑢𝑐𝑡 ← 𝑆𝑠𝑡𝑟𝑢𝑐𝑡 ∪ {G′};
17: end if

18: end for

19: for ∀𝑢 ∈ 𝑉𝑠 ∩ {Γℎ (𝑦)/Γℎ (𝑥)} ∧ 𝑣 ∈ {Γℎ−1 (𝑥)/Γℎ (𝑦)}; do
20: if Λ(G (𝑡) ,G (𝑡) + 𝑒 (𝑢, 𝑣)) < 0.004} ∧ (𝑢, 𝑣) ≠ (𝑥,𝑦) then
21: G′ ← G (𝑡) + 𝑒 (𝑢, 𝑣);
22: 𝑆𝑠𝑡𝑟𝑢𝑐𝑡 ← 𝑆𝑠𝑡𝑟𝑢𝑐𝑡 ∪ {G′};
23: end if

24: end for

25: for ∀𝑣 ∈ 𝑉𝑠/{Γℎ (𝑥) ∪ Γℎ (𝑦)}, ∀𝑖 ∈ Γℎ−1 (𝑥), and ∀𝑗 ∈
Γℎ−1 (𝑦) do

26: if Λ(G (𝑡) ,G (𝑡) + 𝑒 (𝑖, 𝑣) + 𝑒 (𝑣, 𝑗) < 0.004 then

27: G′ ← G (𝑡) + 𝑒 (𝑖, 𝑣) + 𝑒 (𝑣, 𝑗)
28: 𝑆𝑠𝑡𝑟𝑢𝑐𝑡 ← 𝑆𝑠𝑡𝑟𝑢𝑐𝑡 ∪ {G′};
29: end if

30: end for

31: end if

32: Return: 𝑆𝑠𝑡𝑟𝑢𝑐𝑡

300 millions of Amazon customer accounts in 2018 as reported
1
.

1
https://expandedramblings.com/index.php/amazon-statistics/

Even we only consider the search space from its ℎ-hop subgraph,

the perturbation search time cost is still very high. Can we further

improve our attack efficiency? The answer is affirmative.

4.2 Optimized Graph Structure Perturbation

Inspired by the intuition of link formation mechanism — the more

common neighbours two target nodes have, the more likely they are

connected —we construct 𝑆𝑠𝑡𝑟𝑢𝑐𝑡 based on the common neighbours

that the target nodes share. In this context, a common neighbour is
defined as the intersectional neighbours of the two target nodes

within their ℎ-hop subgraphs.

We consider two different kinds of attacks when constructing

𝑆𝑠𝑡𝑟𝑢𝑐𝑡 . On the one hand, to force a positive link to be a negative

link (link hidden), we delete edges to reduce the number of com-

mon neighbours in the subgraph (see line 5-10 in Alg. 2). On the

other hand, to encourage a negative link to become a positive link,

we add edges to force more nodes to become the common neigh-

bours of the target nodes. Precisely, we first consider the nodes

in the ℎ-hop subgraph but are not common neighbours. For these

nodes, we add one edge for each perturbation under the unnotice-

ability constraint (see line 13-20 in Alg. 2). Besides, we consider

the nodes that are not included in the ℎ-hop subgraph. In this case,

we add two edges simultaneously and force the nodes, outside of

the ℎ-hop subgraph, to become the common neighbours under the

unnoticeability constraint (see line 21-26 in Alg. 2).

Regarding the search time complexity, the best-case complex-

ity is max(O(|Γℎ (𝑥) |),O(|Γℎ (𝑦) |)), which can be achieved when

only considering link-hidden attack. The worst-case complexity

is O(|𝑉𝑠 | × (|Γℎ−1 (𝑥) | + |Γℎ−1 (𝑦) |)), which is equal to the average

complexity of Alg. 1. The benefit of Alg. 2 is more significant in

applications where the adversary is more focusing on hiding links.

5 EXPERIMENTAL EVALUATION

We have conducted an extensive array of experiments to evaluate

our proposed methods, including our greedy algorithm (GGSP)

and its efficient variation (OGSP). Our results show that both of

them are able to reduce the availability of the SEAL framework

significantly, achieving strong performance on various datasets.

More importantly, our experimental results have also shown that

our adversarial attacks mounted based on SEAL can be readily

transferred to several existing heuristics in the literature. We run

the experiments 5 times and then use the average attack success

rate (ASR) and the average AUC as our evaluation metrics. To make

direct comparisons, we use the same model architectures as SEAL

shown in Table 3, where 𝑘 is set to ensure that 60% of the subgraph

nodes are larger than 𝑘 [34, 35].

Datasets.We have selected four datasets as the benchmarks to

evaluate our methods. The datasets statistics are given in Table 2.

USAir is a network of US Airlines [5], which average node degree

is 12.81. NS is a collaboration network of researchers in network

science [24], which average node degree is 3.45. Celegans [32] is a

neural network of C.elegans, which average node degree is 14.46

and PB is a network of US political blogs [1], which average node

degree is 27.36.

Similar to SEAL, we split the existent links randomly into a

positive training set (80%) and testing set (10%). As for negative

Table 2: Dataset statistics and AUC using SEAL

Network #nodes/ #edges #training/ #testing AUC

USAir 332/2, 126 3, 400/424 0.959

NS 1, 589/2, 742 4, 386/548 0.959

Celegans 297/2, 148 3, 436/428 0.885

PB 1, 222/16, 714 26, 742/3, 342 0.940

sets, we randomly sample an equal number of non-existent links

as the negative training set and testing set, respectively. We retrain

SEAL for 50 epochs for each dataset, and select the model with the

smallest loss on 10% validation data; these pre-trained models are

used as our target models to mount attacks.

Note that, we remove the edges between the two target nodes in

the enclosing subgraphswhile we train graph neural network, as did

in [34]. This is because these edges would contain the link existence

information, while is not available in the enclosing subgraphs of

testing links. As observed, we report the model AUC on clean data

in Table 2.

We report success if the attack produces an adversarial example

with the incorrect prediction within the perturbation bound Δ, and
the associated perturbed graph still satisfies the unnoticeability

constraint. In our experiments, we set Δ as the target link degree,

which is the sum of degrees of two nodes. This is inspired by the

observation that high-degree links are harder to attack than the

low-degree ones.

Within the testing set, we select 10 links with the highest pre-

diction margin, including 5 positive links and 5 negative links, i.e.,

they clearly are correct predictions (best-set). We also select 10 links

with the lowest prediction margin (but still correctly predicted),

including 5 positive links and 5 negative links (worst-set). Finally,
we select 20 links randomly sampled from the links that are cor-

rectly predicted, including 10 positive links and 10 negative links,

respectively (random-set). These will serve as the target links for our
attack. By default, the average ASR and AUC are reported according

to the prediction results of the links randomly selected.

Table 3: Model architecture of SEAL

Layer Type Parameter

4 Graph Convolutions + Tanh 32, 32, 32, 1 channels

Max-K SortPooling k

1-D Convolution + ReLU 16 output channels,

filter size 2, step size 2

1-D Convolution + ReLU 32 output channels,

filter size 5, step size 1

Dense Layers 128 units

Log-Softmax 2 channels

5.1 Attacks on SEAL

We start by analyzing both of our two algorithms, GGSP and OGSP,

by inspecting their influences on link prediction performance of

SEAL (with full knowledge of the network graph). In Table 4, we

report the average ASR and average AUC over 5 runs when per-

forming attacks on SEAL. For each run, we use the random-set as
our target links. We can see GGSP achieves very high ASR on NS —

100%, and its AUC degrades to 0.000. Even OGSP has an attack per-

formance degradation on this dataset, it still can decline its model

AUC to 0.038.

In Fig. 5, we report how our methods affect different testing sets

(best, worst and random). We define the prediction margin as the

difference between the ground truth label probability with SEAL

and the target label probability. The smaller prediction margin

indicates better attack performance (margin less than 0 indicates a

successful attack). As observed in Fig. 5, most of the averagemargins

are under 0, represented as ‘star’. best-set is harder to attack as its

initial prediction margin are large (typically close to 1). Overall,

it still can achieve reasonably good attack performance with our

algorithms.

Table 4: Average attack success rate/Average AUC

Data GGSP OGSP

USAir 96.3%/0.050 98%/0.000

NS 100%/0.000 79%/0.038

Celegans 87.5%/0.133 82%/0.166

PB 82.5%/0.207 78%/0.294

Furthermore, to inspect and compare the time cost of our two

attack algorithms, we also report the average attack time per link

across different datasets. As Fig. 4 shows, OGSP is way more ef-

ficient than GGSP; it can even be approximately 10× faster on

Celegans. Note that our time cost is averaged over the target links,

containing 50% positive links and 50% negative links. We suspect

that OGSP can achieve even better performance at runtime while

the adversary is more focused on hiding links.

Figure 4: Average attack time per link: GGSP vs. OGSP.

(a) USAir.

(b) NS.

(c) Celegans.

(d) PB.

Figure 5: Link Prediction Margin: GGSP vs. OGSP.

To analyze the performance of our attack with respect to the

adversary capability, we run four sets of experiments when |𝑉𝑠 | are
in different settings for each dataset. We set the number of nodes

that the adversary is capable of manipulating as 25%, 50%, 75% and

100% of the entire node set, respectively. For each run, the node set

𝑉𝑠 is selected randomly. As shown in Fig. 5, as |𝑉𝑠 | becomes larger,

GGSP produces better results. As observed, even with only 25%

perturbable nodes, our algorithm can still achieve a high ASR.

Table 5: Average ASR (GGSP)

|𝑉𝑠 |/𝑁 USAir NS Celegans PB

0.25 66.3% 97.5% 72.5% 69.9%

0.50 91.3% 100% 81.3% 79.3%

0.75 92.5% 100% 84.3% 81.2%

1.00 96.3% 100% 87.5% 82.5%

We further report how the target link surrounding structure

affects the attack performance. We run three sets of experiments in

USAir when the adversary can perturb 25% of the entire node set.

The target links are categorized according to their link degrees. As

seen in Table 6, the target links with higher degrees achieve lower

ASRs, indicating that higher-degree links are harder to attack. The

ASR of the target links in the range [1 : 30) can achieve as high as

90.96%.

Table 6: ASR: Target link surrounding structure complexity

Degree range [1 : 30) [31 : 90) [90 : ∞)

#target links 188 93 78

Attack success rate 90.96% 64.52% 43.58%

Inspecting an adversarial example. Fig. 6 illustrates a real adver-
sarial example mounted for NS. We first randomly select a pair of

nodes as the target nodes (grey); the link (dash line) is to be pre-

dicted using the pre-trained SEAL. Fig. 6a shows its 1-hop enclosing

subgraph; the link is initially predicted as 𝑐 = 0 by SEAL, indicating

the link is negative. Fig. 6a shows its 1-hop enclosing subgraph with

our attack method. The edge in blue is suggested to be added by

our attack. Even just with this edge addition, the link is predicted

as positive.

Transferability of attacks. Note that, our overall objective is to
offer a comprehensive study on the ability of an “adversary" to ma-

nipulate link prediction via adversarial machine learning. For this

purpose, we analyze the transferability of the adversarial attack,

generated based on SEAL, to existing heuristics, including com-

mon neighbors (CN), Jaccard [20], preference attachment (PA) [4],

Adam-Adar (AA) [2], resource allocation (RA) [36], Katz index [19],

PAGERANK [6], SimRank [17] and WLK [28]. We report the asso-

ciated average model AUC over 5 runs, including the model AUC

tested on clean graph data and model AUC tested on attacked graph

data.

Note that, to be comparable, we trained SEAL purely using graph

structure features (the node information matrix contains structural

node labels only as did in [34]). Then we mount the adversarial

attacks using our efficient design — OGSP. As shown in Table 7, the

performance of most existing heuristics is even worse than random

guessing (the model AUC is less than 0.5), indicating that our at-

tacks can be readily transferred to several existing heuristics in the

Table 7: Transferability (AUC)

Data SEAL CN Jaccard PA AA RA Katz PAGERANK SimRank WLK

USAir

Clean Graph 0.967 0.926 0.902 0.843 0.943 0.947 0.910 0.920 0.790 0.960

Attacked Graph 0.002 0.139 0.346 0.827 0.591 0.246 0.780 0.187 0.083 0.517

NS

Clean Graph 0.987 0.934 0.934 0.631 0.934 0.934 0.934 0.934 0.935 0.982

Attacked Graph 0.000 0.000 0.000 0.178 0.000 0.000 0.000 0.100 0.170 0.467

Celegans

Clean Graph 0.872 0.834 0.782 0.745 0.849 0.853 0.849 0.881 0.751 0.880

Attacked Graph 0.233 0.263 0.094 0.703 0.187 0.152 0.300 0.367 0.190 0.508

PB

Clean Graph 0.940 0.908 0.859 0.899 0.913 0.916 0.919 0.934 0.766 0.929

Attacked Graph 0.277 0.564 0.151 0.881 0.510 0.400 0.590 0.603 0.082 0.500

Ҙ

(a) Clean graph: 𝑐 = 0

Ҙ

(b) Attacked graph: 𝑐 = 1

Figure 6: Adversarial Example from NS: given two target

nodes (in grey) randomly selected from NS, the link in

between is un-observed (a) its initial 1-hop subgraph was

predicted as ‘non-existed’ by SEAL; (b) its 1-hop subgraph

after perturbation (just one edge perturbation — blue line —

in this case) was predicted as ‘existed’ by SEAL.

literature. Noticeably, among all the datasets, the mounted attacks

perform extremely well for NS. We can observe that the mounted

attacks failed transfer to preference attachment. We suspect that is

because the heuristic used by preference attachment only considers

individual node degree of the target node and does not contain any

neighbour information, which is not consistent with the typical

link formation mechanism we considered.

Defense against attacks. The mounted attacks violate the funda-

mental assumptions used for link predictions, i.e., the Υ-decaying
theory and link formation mechanism, it is very hard to completely

eliminate the problem. As often applied in the image domain, ad-

versarial training would force the model to assign both clean and

adversarial examples to the same output labels [18]. This raises the

idea of adding adversarial examples into the training set while we

are training the model, which we leave for our future work.

6 RELATEDWORK

Adversarial attacks on link prediction: Zhou et al. investigated the

problem of mounting attacks on several heuristics for link predic-

tion. In this work, they further categorized the heuristics based

on the maximum hop of neighbours needed to calculate the sim-

ilarity score. For each category, they proposed associated attack

approaches via deleting edges only. Chen et al. proposed an itera-

tive gradient attack against graph auto-encoder (GAE)-based link

prediction [10]. In contrast, our attacks are mounted based on SEAL

under “unnoticeability" constraint and are more general, as they

perform well in several link prediction heuristics.

Neural networks for link prediction: Weisfeiler-Lehman Neural

Machine (WLNM) proposed by Zhang et al. is the first attempt to

employ DNNs for link-prediction tasks[33]. In particular, it learns

general graph structure features by encoding enclosing subgraphs

of the training links into fixed-size adjacency matrices and trains

a fully-connected neural network on the adjacency matrices. As

the typical neural networks only accept fixed-size tensor, WLNM

can only learn the link local patterns from the subgraphs with

fixed-size.

Following this work, Zhang et al. proposed the SEAL framework

for link prediction using graph neural network, called SEAL. It has

been shown its state-of-the-art prediction performance empirically

and theoretically. In particular, a Υ-decaying theory has been devel-

oped to unify a wide range of existing heuristics for this task, which

proved that local subgraphs are informative for link prediction.

Adversarial attacks on machine learning:Huang et al. categorized
attacks in adversarial machine learning as either causative or eva-
sion, with the former poisoning the training dataset and the latter

evading the pre-trained model by crafting adversarial examples

[16]. Following the terminology of Huang et at. , our work focuses

on the evasion attacks that aim to create adversarial examples de-

liberately to mislead the state-of-the-art link prediction framework

— SEAL, yet still preserving its unnoticeability.

Adversarial attacks have been shown their capability of sig-

nificantly degrading the performance of deep learning models in

various application domains, e.g., image [8], audio [9] and malware

detection [15]. These applications consider the data instances to be

independent and classify an instance based on features extracted

from only that instance. This directly enables evasion techniques

such as gradient descent/ascent directly in the feature space. For

complex network graph as we considered in this paper, data in-

stances (e.g., links) are interrelated and treated as non i.i.d data.

Adversarial attacks against graph data. Works on adversarial

attacks against complex network graph for GNN-based graph learn-

ing tasks are exceedingly rare, in contrast to other application

domains, not to mention adversarial attacks particularly for link

prediction. Very recently, Zugner et al. first proposed the work on

adversarial attacks against network graph particularly for node clas-

sification tasks [37]. As for the classification model, they focused on

a transductive learning setting. Zugner et al. ’s work is inherently

related to the causative/poisoning attacks [16]. Following this work,

Zugner et al. investigated the problem of training-time attacks on

the overall performance of node classification via the principle of

meta learning [38].

Along with the work of Zugner et al. , Dai et al. proposed to em-

ploy reinforcement learning approach to attack in both the graph-

level learning tasks and the node-level classification tasks [13]. Un-

like Zugner et al. ’s causative/poisoning attacks, Dai et al. ’s work
focused on the evasion attacks particularly against node/graph clas-

sification tasks. Except for Dai et al. ’s evasion attacks, Wang et
al. studied evasion attacks against collective classification methods

via manipulating the graph structure [30]. In contrast, our work

focuses on adversarial GNN-based link prediction, which deals with

coupled perturbation variables and non i.i.d graph data. We also

evaluate the different capabilities of the adversary with various

perturbable sets, and analyze its transferability to existing link

prediction heuristics.

7 CONCLUDING REMARKS

We have shown that adversarial attacks on graphs can break the

SEAL framework that uses GNNs for link prediction. These attacks

can often achieve significantly higher attack success rates, and can

degrade themodel performance by a substantial margin, making the

prediction error even worse than random guessing. By incorporat-

ing the Υ-decaying theory and the link formation mechanism, our

attacks can be generated efficiently and effectively. The prediction

performance is consistently exacerbated, even when the adversary’s

capability is restricted to only parts of the network graph. Based

on our extensive experiments, we show that the attacks mounted

based on GNN-based link prediction can be transferred to several

existing heuristics with our design.

REFERENCES

[1] Robert Ackland et al. 2005. Mapping the US Political Blogosphere: Are Conserva-

tive Bloggers More Prominent?. In BlogTalk Downunder 2005 Conference, Sydney.
BlogTalk Downunder 2005 Conference, Sydney.

[2] Lada A Adamic and Eytan Adar. 2003. Friends and Neighbors on the Web. Social
Networks 25, 3 (2003), 211–230.

[3] Mohammad Al Hasan, Vineet Chaoji, Saeed Salem, and Mohammed Zaki. 2006.

Link Prediction using Supervised Learning. In SDM06: Workshop on Link Analysis,
Counter-Terrorism and Security.

[4] Albert-László Barabási and Réka Albert. 1999. Emergence of Scaling in Random

Networks. Science 286, 5439 (1999), 509–512.
[5] Vladimir Batagelj and Andrej Mrvar. 2006. . http://vlado.fmf.unilj.si/pub/

networks/data/

[6] Sergey Brin and Lawrence Page. 1998. The Anatomy of a Large-Scale Hypertex-

tual Web Search Engine. Computer Networks and ISDN Systems 30, 1-7 (1998),
107–117.

[7] Emrah Budur, Seungmin Lee, and Vein S Kong. 2015. Structural Analysis of

Criminal Network and Predicting Hidden Links using Machine Learning. arXiv
preprint arXiv:1507.05739 (2015).

[8] Nicholas Carlini and David Wagner. 2017. Towards Evaluating the Robustness of

Neural Networks. In Proc. IEEE Symposium on Security and Privacy (S&P 2017).
[9] Nicholas Carlini and David Wagner. 2018. Audio Adversarial Examples: Targeted

Attacks on Speech-to-Text. arXiv preprint arXiv:1801.01944 (2018).
[10] Jinjin Chen, Ziqiang Shi, Yangyang Wu, Xuanheng Xu, and Haibin Zheng. 2018.

Link Prediction Adversarial Attack. arXiv preprint arXiv:1803.06373 (2018).
[11] Pin-Yu Chen, Yash Sharma, Huan Zhang, Jinfeng Yi, and Cho-Jui Hsieh. 2018.

EAD: Elastic-Net Attacks to Deep Neural Networks via Adversarial Examples. In

Proc. AAAI Conference on Artificial Intelligence (AAAI 2018).
[12] Yizheng Chen, Yacin Nadji, Athanasios Kountouras, Fabian Monrose, Roberto

Perdisci, Manos Antonakakis, and Nikolaos Vasiloglou. 2017. Practical Attacks

against Graph-Based Clustering. In Proc. ACM SIGSAC Conference on Computer
and Communications Security (CCS 2017).

[13] Hanjun Dai, Hui Li, Tian Tian, Xin Huang, Lin Wang, Jun Zhu, and Le Song. 2018.

Adversarial Attack on Graph Structured Data. In Proc. International Conference
on Machine Learning (ICML 2018).

[14] Yuxiao Dong, Jie Tang, Sen Wu, Jilei Tian, Nitesh V Chawla, Jinghai Rao, and

Huanhuan Cao. 2012. Link Prediction and Recommendation across Heteroge-

neous Social Networks. In Proc. IEEE International Conference on Data Mining
(ICDM 2012). 181–190.

[15] Kathrin Grosse, Nicolas Papernot, Praveen Manoharan, Michael Backes, and

Patrick McDaniel. 2017. Adversarial Examples for Malware Detection. In Proc. Eu-
ropean Symposium on Research in Computer Security (ESORICS 2017). Springer.

[16] Ling Huang, Anthony D Joseph, Blaine Nelson, Benjamin IP Rubinstein, and JD

Tygar. 2011. Adversarial Machine Learning. In Proc. ACM Workshop on Security
and Artificial Intelligence.

[17] Glen Jeh and Jennifer Widom. 2002. SimRank: A Measure of Structural-Context

Similarity. In Proc. ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (KDD 2002). 538–543.

[18] Harini Kannan, Alexey Kurakin, and Ian Goodfellow. 2018. Adversarial Logit

Pairing. arXiv preprint arXiv:1803.06373 (2018).
[19] Leo Katz. 1953. A New Status Index Derived from Sociometric Analysis. Psy-

chometrika 18, 1 (1953), 39–43.
[20] David Liben-Nowell and Jon Kleinberg. 2007. The Link-Prediction Problem for

Social Networks. Journal of the American Society for Information Science and
Technology 58, 7 (2007), 1019–1031.

[21] Yanpei Liu, Xinyun Chen, Chang Liu, and Dawn Song. 2017. Delving into

Transferable Adversarial Examples and Black-Box Attacks. In Proc. International
Conference on Learning Representation (ICLR 2017).

[22] Linyuan Lü and Tao Zhou. 2011. Link Prediction in Complex Networks: A Survey.

Physica A: Statistical Mechanics and Its Applications 390, 6 (2011), 1150–1170.
[23] Yacin Nadji, Manos Antonakakis, Roberto Perdisci, and Wenke Lee. 2013. Con-

nected Colors: Unveiling the Structure of Criminal Networks. In Proc. Interna-
tional Workshop on Recent Advances in Intrusion Detection. Springer.

[24] Mark EJ Newman. 2006. Finding Community Structure in Networks using the

Eigenvectors of Matrices. Physical Review E 74, 3 (2006), 036104.

[25] Joshua O’Madadhain, Jon Hutchins, and Padhraic Smyth. 2005. Prediction and

Ranking Algorithms for Event-Based Network Data. ACM SIGKDD Explorations
Newsletter 7, 2 (2005), 23–30.

[26] Nicolas Papernot, Patrick McDaniel, and Ian Goodfellow. 2016. Transferability

in Machine Learning: from Phenomena to Black-Box Attacks using Adversarial

Samples. arXiv preprint arXiv:1605.07277 (2016).

[27] Nicolas Papernot, Patrick McDaniel, Ian Goodfellow, Somesh Jha, Z Berkay Celik,

and Ananthram Swami. 2017. Practical Black-Box Attacks against Machine

Learning. In Proc. ACM on Asia Conference on Computer and Communications
Security (AsiaCCS 2017). ACM, 506–519.

[28] Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt Mehlhorn,

and Karsten M Borgwardt. 2011. Weisfeiler-Lehman Graph Kernels. Journal of
Machine Learning Research 12, Sep (2011), 2539–2561.

[29] Florian Tramèr, Nicolas Papernot, Ian Goodfellow, Dan Boneh, and Patrick Mc-

Daniel. 2017. The Space of Transferable Adversarial Examples. arXiv preprint
arXiv:1704.03453 (2017).

[30] Binghui Wang and Neil Zhenqiang Gong. 2019. Attacking Graph-based Classifi-

cation via Manipulating the Graph Structure. In Proc. ACM SIGSAC Conference
on Computer and Communications Security (CCS 2019).

[31] Hao Wang, Xingjian Shi, and Dit-Yan Yeung. 2017. Relational Deep Learning:

A Deep Latent Variable Model for Link Prediction. In Proc. AAAI Conference on
Artificial Intelligence.

http://vlado.fmf.unilj.si/pub/networks/data/
http://vlado.fmf.unilj.si/pub/networks/data/

[32] Duncan J Watts and Steven H Strogatz. 1998. Collective Dynamics of “Small-

World” Networks. Nature 393, 6684 (1998), 440.
[33] Muhan Zhang and Yixin Chen. 2017. Weisfeiler-Lehman Neural Machine for

Link Prediction. In Proc. ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD 2017).

[34] Muhan Zhang and Yixin Chen. 2018. Link Prediction Based on Graph Neural

Networks. In Proc. International Conference on Neural Information Processing
Systems (NeurIPS 2018).

[35] Muhan Zhang, Zhicheng Cui, Marion Neumann, and Yixin Chen. 2018. An

End-to-End Deep Learning Architecture for Graph Classification. In Proc. AAAI

Conference on Artificial Intelligence (AAAI 2018).
[36] Tao Zhou, Linyuan Lü, and Yi-Cheng Zhang. 2009. Predicting Missing Links via

Local Information. The European Physical Journal B 71, 4 (2009), 623–630.

[37] Daniel Zugner, Amir Akbarnejad, and Stephan Gunnemann. 2018. Adversarial

Attacks on Neural Networks for Graph Data. In Proc. ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD 2018).

[38] Daniel Zugner and Stephan Gunnemann. 2019. Adversarial Attacks on Graph

Neural Networks via Meta Learning. In Proc. International Conference on Learning
Representation (ICLR 2019).

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Heuristics for Link Prediction
	2.2 Graph Neural Networks
	2.3 The SEAL Framework
	2.4 Attack Transferability

	3 Problem Formulation
	3.1 Notations
	3.2 Threat Model
	3.3 Unnoticeability Constraint
	3.4 Attacks as an Optimization Problem

	4 Generating Adversarial Attacks
	4.1 Greedy Graph Structure Perturbation
	4.2 Optimized Graph Structure Perturbation

	5 Experimental Evaluation
	5.1 Attacks on SEAL

	6 Related Work
	7 Concluding Remarks
	References

