Towards Private Learning on Decentralized
Graphs with Local Differential Privacy

Wanyu Lin, Member, IEEE, Baochun Li, Fellow, IEEE, and Cong Wang, Fellow, IEEE

Abstract—Many real-world networks are inherently decentralized. For example, in social networks, each user maintains a local view of
a social graph, such as a list of friends and her profile. It is typical to collect these local views of social graphs and conduct graph
learning tasks. However, learning over graphs can raise privacy concerns as these local views often contain sensitive information.

In this paper, we seek to ensure private graph learning on a decentralized network graph. Towards this objective, we propose Solitude,
a new privacy-preserving learning framework based on graph neural networks (GNNSs), with formal privacy guarantees based on edge
local differential privacy. The crux of Solitude is a set of new delicate mechanisms that can calibrate the introduced noise in the
decentralized graph collected from the users. The principle behind the calibration is the intrinsic properties shared by many real-world
graphs, such as sparsity. Unlike existing work on locally private GNNs, our new framework can simultaneously protect node feature
privacy and edge privacy, and can seamlessly incorporate with any GNN with privacy-utility guarantees. Extensive experiments on
benchmarking datasets show that Solitude can retain the generalization capability of the learned GNN while preserving the users’ data

privacy under given privacy budgets.

Index Terms—Privacy-Preserving Graph Learning, Graph Neural Networks, Differential Privacy, Decentralized Network Graph

1 INTRODUCTION

Many problems in scientific domains, ranging from com-
puter networks [1] and social networks to biomedicine and
healthcare [2], [3], can be naturally cast as problems of
property learning on graphs. Typically, these graph domains
contain sensitive information. In computer networks, for
example, the goal of botnets detection is to isolate the botnet
nodes, where the problem can be formulated as binary node
classification task on massive background Internet commu-
nication graphs [4]. However, the Internet Service Providers
(ISPs) may be reluctant to share traffic observations (mod-
eled as edges in the communication graphs [4]). Likewise,
in social networks, users’ contact lists, profile information,
likes or comments, etc., should be kept be private, as most
users are not willing to release their contact lists to strangers.
Inevitably, the use of sensitive and private graph data re-
quires principled and rigorous privacy guarantees.

On the other hand, among various graph learning al-
gorithms, graph neural networks (GNNs) have exhibited
superior performance [4], due to their efficiency and induc-
tive learning capability [5]. A recent work shows that the
edge information of graphs can be recovered from GNNs
through influence analysis [6]. Therefore, it is appealing
to tailor the GNNs to perform graph learning tasks while
still preserving user data privacy. A plausible approach is
local differential privacy (LDP) [7], where each user locally

o W. Lin is with the Department of Computing, The Hong Kong Polytechnic
University, Hong Kong, China.
E-mail: wanylin@comp.polyu.edu.hk.

e B. Li is with the Department of Electrical and Computer Engineering,
University of Toronto, Ontario, M5S 1A1, Canada.
Email: bli@ece.toronto.edu.

o C. Wang is with the Department of Computer Science, City University of
Hong Kong, Hong Kong, China.
E-mail: congwang@cityu.edu.hk.

obfuscates their share of data before sending them to a
data curator (who may be malicious). As the data curator
performs model learning over the obfuscated data, data
privacy may be preserved under given privacy budgets.
However, most existing LDP techniques for graphs mainly
focused on graph statistics analysis while protecting the
privacy of edge/link information. Typical graph statistics
include subgraph counting [8] (e.g., triangles and k-stars
counting) and graph metric estimations [9] (e.g., clustering
coefficient, modularity, or centrality estimation), which are
not designed for GNNs.

Learning over the obfuscated graphs with GNNss is quite
challenging. In general, training deep learning models with
strong differential privacy guarantees comes at a significant
cost in utility [10], [11]. Specifically, in the context of graph
learning, graph data usually contains node feature informa-
tion and graph structure information. The combinatorial na-
ture of graph structures makes the private learning problem
more complex than other domains. These can be explained
as follows. In GNNs, the node representations — can be
used for various downstream tasks — are learned in a way
that node information is aggregated and propagated via
links through the message passing framework during train-
ing [5], [12]. In node classification tasks or link prediction
tasks, the training samples (nodes or links in the graph)
of the learning model are interdependent. In contrast, the
existing work on LDP for tabular data assumes that each
user’s data is independently and identically drawn from an
underlying distribution [13], [14], which is problematic in
the context of graphs.

While private graph learning with GNNs is still a
nascent research topic, a recent proposal attempts to pre-
serve the privacy of the node features [15]. However, this
model raises several privacy and security issues as it as-
sumes that the data curator holds the global graph structure.

— N
(T
Private Graph Learning <
Data curator -~ with GNNs

Ve f » \

/ / \ AN
User &
A ¥ 4 P

LS & g

Fig. 1: The illustration of private learning over decentralized
graph network: 1) each user holds a data share including a
local neighbour list and the profile information; 2) the data
curator collects the obfuscated data and conducts learning
over the collected noisy graphs.

If the topological features contain sensitive information, this
approach may incur information leakage as the data curator
can directly access the global topology for the message
passing process. Therefore, in this paper, we study the
problem of differentially private graph learning with GNNs
on a decentralized network graph, as shown in Fig. 1. In
particular, the data curator cannot directly access the global
structure of the graph. In other words, both the node feature
and graph structure information should be protected against
the data curator.

Privacy-preserving learning under the setting of decen-
tralized network graphs has various applications, including
but not limited to social network analysis and mobile com-
puting. In principle, some social networks are inherently
decentralized and distributed, such as Synereo [16]. Though
in some other social networks, e.g., Facebook, there exists
a centralized party that holds the knowledge of the global
network, that party may choose not to share it with a third-
party (corresponding to the data curator) for analyzing, due
to legal issues or other business concerns.

With the prevalence of decentralized network graphs, we
propose a new framework consisting of a set of mechanisms,
called Solitude, to tailor the GNNs for decentralized graph
analysis under local differential privacy. Our framework
has provable privacy guarantees based on local differential
privacy. Specifically, we leverage the notion of edge local
differential privacy proposed in [17]. To protect the pri-
vacy of neighbor lists, each user applies Warner’s random-
ized response mechanism [18] to obfuscate their neighbor
lists before sending them to the data curator. For protect-
ing node/user! feature privacy, we further incorporate a
multi-bit mechanism for multi-dimensional feature pertur-
bation [15], [19], which can ensure that the high-dimensional
feature vector of every user can be protected. However,
learning over obfuscated graphs introduces challenges, as it
could significantly degrade the generalization capability of
the GNN. Precisely, the learned GNN may overfit the noisy
graphs and generalize poorly to unseen nodes.

To this end, we propose new mechanisms for graph
structure calibration and feature vector calibration, respec-

1. In many applications, such as social networks, each node repre-
sents a user; we use “node” and “user” interchangeably.

TABLE 1: Notations

Notation Descriptions
a; the adjacency list of user i
a; randomized adjacency list of user i
X; the feature vector of user i
X; the encoded feature vector of user i
X; the rectified feature vector of user i
M, the randomized mechanism for adjacency lists
M, the randomized mechanism for node features
€z, €a privacy budgets for features and adjacency lists
NG the node degree of user i
Ac the adjacency matrix after calibration
Xe the node feature matrix after calibration
I - 1% the Frobenius norm of a matrix
|11 l1 norm operator
0 the model parameters
A1, Ao the regularization coefficients

tively. Essentially, obfuscating graph structure via a random-
ized response mechanism introduces edge deletion, addi-
tion, and rewiring. Though the obfuscating process satisfies
our privacy goal, we theoretically and empirically analyze
that this process tends to return a much denser graph
than the original one, violating the sparsity property — an
inherent property exhibited in many real-world graphs [20].
Therefore, we propose encouraging the sparseness of the
graph structure during training as a calibration step to
reduce the effect of the noise. In addition, a node might
be linked to nodes with task-specific “noise,” leading to the
aggregation of non-smooth features in GNNs. Inspired by
the assumption of feature smoothness in GNNs, we leverage
a feature smoothing component before training to reduce
the effect of the feature noise. To further boost the predic-
tion accuracy, a label smoothness component is adopted,
which is inspired by the principles of label propagation
algorithms [21], [22].

In a nutshell, our original contributions are listed as
follows. We propose a new privacy-preserving learning
framework for decentralized network graphs based on
graph neural networks. It consists of a set of mechanisms
that can provide local differential privacy for every user
yet maintaining the generalization capability of the learned
GNN. We formally analyze that our mechanisms preserve
local differential privacy for every user, particularly on
the notion of edge differential privacy. Towards our goal,
we theoretically and empirically analyze the overfitting
problem while learning over the noisy graphs. Different
from the literature on locally private GNNs, Solitude can
preserve edge privacy and node feature privacy for every
user simultaneously. Our extensive array of experiments on
benchmarking datasets demonstrated that Solitude can sig-
nificantly improve the privacy-utility guarantees on canon-
ical graph learning benchmarks. We also empirically show
that our framework can seamlessly integrate with any GNN
architectures, such as GCN [12] and GraphSage [5], with
privacy-utility guarantees.

2 PROBLEM SETUP
2.1 Notations and Problem Definition
Notations. We consider a network graph, denoted as

G = (V, A, X). Specifically, we consider the decentral-
ized setting, where the entire graph is decentralized over
users/nodes V = {vy,---,vjy|}. Precisely, each user v;
holds locally a neighbor list depicted as a;, which can
be modeled as an [|V|-binary vector, and a node at-
tribute/feature vector x; € RIPI, where |D| is the dimen-
sion of the user/node feature vector. The corresponding
adjacency matrix of the entire graph can be represented as
A = {ai,---,a|}, where A ¢ RIVIXVI and the node
attribute matrix X = {xi,--- , x|}, where X € RIVI*IPI.
In the context of social network graphs, for example, each
user locally holds their friend list and the profile information
(e.g., WeChat [23]). Without loss of generality, we assume G
is a directed graph; this reflects the real-world application
domains, e.g, the follower-followee relationships.

Consistent with prior work [15], we focus on the node
classification task with graph neural networks. Specifically,
we follow the standard node classification setting, which is
commonly employed in various literature [5], [12]. Given
a set of labeled nodes V; C V, with class labels from
Y = {y1,92,93, - ,yx} and a set of unlabeled nodes
Vu C V/V,, the goal of node classification is to map each
node v € V to one class in).

Problem Definition. We assume that the data curator
is an untrusted party, and it can access the set/index of
nodes/users V = {v1,---,vy|} and the node labels of
the training set V. However, the data curator could not
directly access the feature matrices X and A, which are
decentralized among the users and private to the users. The
data curator is allowed to collect information from the users,
and performs node classification with GNNs over the noisy
graphs.

Therefore, our ultimate goal is to obtain a set of mecha-
nisms that 1) the data curator can collect data portions from
each user while preserving the user data privacy; 2) the data
curator can train a GNN for node classification over the
collected noisy graph with the best possible generalization
capability. Without loss of generality, model generalization
capability is measured by the prediction accuracy on the
held-out test set that has not been seen during training. Note
that, different from the state-of-the-art on locally private
GNN [15] — LPGNN, we consider a more advanced setting
that the global topology of the graph is not accessible to
the data curator. Concretely, user v;’s private data includes
the neighbor list, or called adjacency list, a; and the node
attribute /feature vector x;. In what follows, we first briefly
introduce some necessary background on graph learning
with GNNs and the notion of local differential privacy on
graphs to facilitate a better understanding of our solution.
The mathematical notations used in this paper are summa-
rized in Table 1.

2.2 Message Passing Graph Neural Networks

Graph neural networks (GNNSs) are tailored to learn and
model information structured as graph data. It is a family
of graph message passing architectures that incorporate
graph structure and node feature vectors to learn a dense
representation of a node or the entire graph. In principle,
GNNs share a neighborhood aggregation strategy, where
the node representations are refined via iteratively aggre-
gating the representations from its neighboring nodes in

3

the graph. Representative GNNs are graph convolutional
networks, which use mean pooling for aggregation [12],
and GraphSage that aggregates the node features via
mean/max/LSTM pooling [5].

Taking GCNs as an example, the basic operator for the
neighborhood information aggregation is the element-wise
mean. After L iterations of aggregation, a node’s represen-
tation can capture the structural information within its L-
hop graph neighborhood, which can be formulated as:

Rl o (Wl - mean ({hi,} U {hl, Vue J\/'(v)}))

)
where W' is a trainable matrix for layer [, o denotes a
nonlinear activation function. Note that, except for mean
operator, there are many other operators for neighborhood
information aggregation, such as max pooling. Due to
their superior performance, these operators have been the
core of many graph neural networks. For more details on
other GNN variations, we refer the interested readers to the
existing survey [24].

2.3 Local Differential Privacy

Local differential privacy (LDP) has emerged as the de facto
solution for collecting private data and performing statisti-
cal queries, such as mean, counting, etc. In principle, it is a
privacy metric to protect the sensitive information of indi-
viduals from the data curator [7], [25]. In the setting of LDP,
each user does not trust the data curator. Before sending her
share of data to the data curator, each user locally perturbs
the data portion with a differentially private mechanism.
The perturbed data is not meaningful individually but can
be used for data analytics when aggregated.

In the context of graph data, a differentially private
mechanism can be designed for edge differential pri-
vacy [26], or node differential privacy [27]. In essence, edge
differential privacy ensures that a randomized mechanism
does not reveal the addition or deletion of an edge in the
neighbor list of an individual. In contrast, a randomized
mechanism for node differential privacy hides the deletion
or addition of a node along with its link list. Consistent
with prior works [9], [17], we adopt the notion of edge local
differential privacy (LDP) based on a user’s neighbor list.

Formally, let a; = (a;1,---,a;)y) € {0, 1}|V| be the
neighbor list of the user v;, where a; is the i-th row of the
adjacency matrix A of the global network graph G. Stated
differently, the adjacency matrix of G can be represented as
A = {aj,ay,--- ,a)y|}. Then edge LDP can be defined as
follows [8], [17]:

Definition 1 (Edge local differential privacy). A randomized
mechanism M satisfies e-edge local differential privacy
(e-edge LDP) if and only if for any two neighbor lists a
and a, such that a and a only differ in one bit, and any
s C range(M), we have

PriM(a) = s
PriM(a) = s
where ¢ is the privacy budget.

<e, 2

Note that, e-edge LDP in Definition 1 protects one single
bit in a neighbor list with privacy budget €. By adopting
the notion of group privacy [18], e-edge LDP can be used to

protect k& € N edges. Concretely, if M provides e-edge LDP,
then for any two neighbor lists a and a that differ in k edges
and any s C range(M), we have

PI‘[M(?.) — S] < 6’“7 (3)

PriM(a) = s]
where k edges are protected with privacy budget ke.

Properties. LDP satisfies composition property and trans-

formation invariance [27]. Specifically, composition prop-
erty enables the modular design of mechanisms: if all the
components of a mechanism are differentially private, so
is their composition. The transformation invariance demon-
strates that performing post-processing on the output of
an algorithm that satisfies LDP does not affect the privacy
guarantee.

3 Solitude: OUR PROPOSED FRAMEWORK

This section describes the main components of our pro-
posed framework, called Solitude, toward differentially pri-
vate training of GNN over private graph data, including
the node feature vectors and the neighbor lists that are
decentralized across all users. Specifically, there are two
stages in our framework. In the first stage, the data curator
sends a query to each user v; once, and then each user v;
independently sends an answer — the obfuscated data share,
including the obfuscated version of node feature vector X;
and the obfuscated adjacency list a; (shown in Fig. 1). In
the second stage, the data curator performs training of the
GNN over the noisy graph composed of the obfuscated data
shares from all users. The second stage of our Solitude is
illustrated in Fig. 2.

In what follows, we first introduce the technical details
of the randomized mechanisms used for preserving data
privacy satisfying local differential privacy. Then we theo-
retically and empirically analyze the overfitting issue caused
by the randomized mechanisms. We show how to calibrate
the introduced noise such that the generalization capability
of the trained GNN can be retained.

3.1 Obfuscating Local Data under Local Differential
Privacy

In the setting of the decentralized network graph, each user
v; holds a data portion of the entire graph, including their
feature vector x; and the adjacency list a;, both of which
are private to the user. In the subsequent paragraphs, we
describe the used mechanisms for protecting the privacy of
the feature vector and the adjacency list, respectively.

Randomized Adjacency List. Intrinsically, an adjacency
list is a binary bit vector, denoted as a; = {a; 1, ,a; v},
in which a;; = 1 indicates the link between v; and
v;. Without loss of generality, we leverage of a common
methodology, called randomized response [17], [18], to impel
local differential privacy. Specifically, each user flips each
bit of her adjacency list with a probability p constrained
by a given privacy budget. More formally, given a pri-
vacy budget ¢,, the randomized adjacency list, denoted as
a; = {a;,1,--- ,a;,y|}, is obtained as follows:

Qg =
am:{ AT @)

_ 1
L=aij, P= 1yew

4
where ¢ = 1 — p is the probability of retaining a particular
bit in the adjacency list.

Theorem 3.1. The randomized adjacency list mechanism M,
satisfies ¢,-edge local differential privacy.

Proof. Let us consider the case that a; and a; only differ
in one bit. Concretely, we assume that a; ; # a; j, and given

any output s = (s1,-- -, $p) from M, we have
PriM, (a) = 5] _ prlas = 5] prias, = 5] o
Pr[./\/la(é,) = S] pI‘[CNLZ‘J — 81)} s pr[&ivn — ST,)]

_Prlai 2 sl _ 4 ()
priai; = s;)] P
Randomized Feature Vector. If the privacy of the node
feature is also the concern, we further leverage a multi-
bit mechanism to protect its privacy for every user. The
randomized mechanism for feature vector in our frame-
work follows the similar outline as the mechanism used
in [15], [19]. Specifically, the multi-bit mechanism has two
components: an encoder and a rectifier, as shown in Fig. 3.
To randomize a feature vector x; € RIPl where each
element z; ; falls into the range [Zmin, Tmax], the encoder
first uniformly samples m features out of the D dimensions.
Each of the selected features is encoded into —1 or 1, with a
probability formulated as

1 Zi.5 — Tmin eE‘T‘/m -1

ec=/m 41 +

. . 7
LTmax — Tmin esx/m +1 ()
Correspondingly, the rest of the d — m features are mapped
to Os. The rectifier is to calibrate the encoded vector X to
ensure the outcome of the randomized mechanism x is
statistically unbiased. Formally, the rectifier is instantiated
as

~ |D| : (xm x xmin) eem/m +1 ~
Rec(Z;,;) = ;m Caaym 1 Lii (8)
Tmax T Tmin
+—)

2

Theorem 3.2. The randomized mechanism for node feature
vector M, preserves ¢, differential privacy of every
user.

Due to the page limitation, we refer to the detailed proof of
Theorem 3.2 to [15], [19]. Note that the multi-bit mechanism
for feature vector is different from the notion of node lo-
cal differential privacy (node-LDP). Specifically, node-LDP
hides the deletion or addition of a node along with its
neighbor list; it is out of the scope in this paper. With
the composition property of local differential privacy as
described in Sec. 2.3, we arrive at the following corollary:

Corollary 3.1. The randomized mechanisms (M, and M)
together satisfy ¢, + ¢, differential privacy of every user.

3.2 Private GNN Training with Calibration

Now with the collected graph data from all users, the data
curator can reconstruct the global graph, and it is ready to
perform graph analytics with message passing GNNSs; the
task is instantiated with node classification in this work.
Yet it can be generalized to other graph learning tasks,
such as link prediction, clustering coefficient prediction [28],

Graph structure
calibration

Collected
noisy graph

Feature
calibration

O ———| GNN

Fig. 2: Illustration of the private GNN training at the data curator side. It consists of two components: 1) a feature denoising
component to reduce the effect of non-smooth aggregation; it is carried out before the training process; 2) a graph structure
denoising component to enforce the graph structure’s sparseness; this process is jointly optimized with the model training.

Multi-Bit Randomized Mechanism

Fig. 3: Illustration of multi-bit mechanism. The encoder
encodes the multi-dimensional features x; € RIP! into
%; € {—1,0,1}/P!, with a probability defined by the privacy
budget. The rectifier is to calibrate the encoded vector %X; to
ensure the outcome X; is statistically unbiased.

as these tasks all share the same graph message passing
architecture. Unfortunately, the collected graph is noisy;
aggregating and propagating the noisy information leads
to over-fitting which degenerates the generalization ability.

Why does the performance degrade? Although the
randomized collection of the adjacency lists and feature
vectors satisfies our privacy goal, the reconstructed graph
does not reflect the original decentralized social graph well.
From the perspective of the graph structure, it tends to
return a much denser graph than the original one. For
example, a citation network Cora [29] has |V| = 2708 nodes,
and the average node degree is 3.89. Mathematically, the
randomized mechanism M, introduces p x |V|?> = 6681
edge flipping with ¢, = 7 in expectation. We empirically
analyze the average node degree of the reconstructed graph
in the setting of ¢, = 7; it is 6.35 by averaging the results
of 5 repeats. Concretely, it introduces 6634 edges that may
be task-irrelevant, averaged over 5 repeats. A node might
be linked to nodes with task-specific “noisy” edges due to
the randomized flipping. Aggregating messages from these
nodes would compromise the quality of the node embed-
ding and lead to undesirable predictions in the downstream
tasks.

To visualize the performance degradation, we evaluated
the task of document classification with different values of
privacy budgets on Cora [29] and CiteSeer [30] respectively.
As observations are similar in other values of €., we present

the results of €, = 1 while changing the value of ¢, in
Table 2. We observed that under the randomized mecha-
nisms, the performance of GNNs is non-significant. In what
follows, we are interested to exploit the intrinsic properties
of the data to boost the classification accuracy with further
gains when the graph is collected satisfying given privacy
goals.

TABLE 2: Classification accuracy (%) on Cora and CiteSeer,
with €, = 1. The performance are insignificant in various

edge privacy budgets.

@ | 7o | 73 | 75 | 77 | 79
CORA [50.9 + 3.8(54.9 4+ 3.7|57.2 + 2.5[61.4 + 2.6[63.7 + 2.4
CITESEER|35.0 = 1.8(39.1 & 1.3]42.3 4 1.5[44.5 4+ 1.2]45.7 4+ 1.8

Graph Structure Denoising. The randomized flipping
introduces “noisy” edges that can degrade the general-
ization performance of the GNNs. These edges tend to
connect nodes within different communities or with differ-
ent labels, and they should be pruned for better learning
performance. According to the analysis mentioned above,
the randomized flipping increases the density of the graph.
Therefore, we propose to calibrate the collected noisy graph
by encouraging the sparseness of the graph structure. In
particular, we calibrate the graph structure by minimizing
the I; norm of the calibrated adjacency matrix, denoted as
[|A¢||1. Therefore, the graph structure calibration process
can be formulated as an optimization problem, shown in
Eqg. 10.

min |A — A%|[E + A[[A1, (10)

where A€ represented the adjacency matrix after calibration,
and A\ control the associated calibration level. The first
term is to ensure the calibrated matrix to be close to the
collected graph topology. Concretely, the distance of the
calibrated matrix and the collected matrix is measured by
the Frobenius norm. The Frobenius norm of a matrix A is
defined by [|A[|f = ¥a7 ;. We are aware of the drawbacks
of reusing notations. A in the definition of the Frobenius
norm represents any matrix for simplicity.

Node Feature Vector Denoising. In GNNSs, it computes
the new representation of a node by aggregating and prop-
agating information from its neighbors [5]. The learned
representations of connected nodes tend to be similar. Stated
differently, for message passing graph neural network to
work, a certain assumption, called the smoothness assump-
tion, has to hold. This reflects the real-world phenomenon on
graphs from various domains. For example, two connected
users in a social graph are likely to share similar features,
fulfilling the property of feature smoothness. However, in the
noisy graphs, the GNNs may result in degenerated node
representations due to the non-smooth features aggregating
from the neighbors, leading to performance degradation of
the learned GNN.

To address the above issue, we leverage a feature
smoothing component that applies a mean aggregator [15]
to enhance the node features — denoising via mean aggre-
gation of the node features from the neighbors. Specifi-
cally, instead of using the rectified features X, we refine
the features of each node by averaging the feature vector
from their neighbors within I-hop. Formally, the process of
feature smoothing within 1-hop can be formulated as:

X¢ = S E— 11
= 2 NN v
Our feature smoothing component is executed with /,, times,
which is data-driven and needs to be tuned to avoid over-
smoothing problem.

These denoising processes, including graph-structure
denoising and feature vector denoising, are designed as
calibration steps for better learning of the GNNs. According
to the transformation invariance of LDP [27], these processes
would not affect the privacy guarantee. Stated differently,
the output of these processes is still noisy and does not
reflect the private data portion of each user. Nevertheless,
the feature smoothing operation is designed to reduce the
noise effect that may degrade the generalization capability
of the GNN.

Model Training. To evaluate the effectiveness of Solitude
for privacy-preserving graph learning tasks, we instanti-
ate the graph learning task with node classification. We
denote the target classifier as f(%X) = arg max, p(y|x),
where p(y|x) = g(A€; X¢, 8). More specifically, g represents
the GNN model and 6 are the learned model parameters
given the obfuscated graph G = (A, X) and the denoising
mechanisms. Note that the generalization capability of the
learned model is measured by the prediction accuracy over
an obfuscated /noisy test set that is not seen during training.
To further boost the prediction accuracy, we further incor-
porate a label smoothing component, which is inspired by
the principles of label propagation algorithms [21], [22] —
node labels are propagated and aggregated along edges in
the graph. Formally, the label smoothing component within
1-hop is formulated as:

p(ylx)
W (i) ||N (v5)|

>

v;EN (vi)

ply‘lx) = (12)
The label smoothing component can be carried out with I,

times, similar to the feature smoothing component. In Sec. 4,
we will show that for node classification tasks, improving

6

privacy-utility guarantees needs more labeled samples for
training.

In general, the model parameters are obtained by mini-
mizing the cross-entropy error over all labeled samples:

K
Lonn(AS X 0) == Y >y Inp(yi %),
v, €V k=1

(13)

where V) is the set of node indices that have labels, and K is
the number of classes/labels.

Intuitively, the denoising processes can be regarded as
data preprocessing for model training. In other words, at
the data curator side, Solitude can first proceed with the
mechanism for feature vector denoising and then optimize
Eq. 10 to obtain a “denoised” graph structure. After that, the
“denoised” graph is treated as the input of the GNN model.
By solving Eq. 13, the model parameters 8 can be obtained.
Note that our ultimate goal is to obtain a GNN model
with optimum generalization capability measured by the
prediction accuracy on the test set. From this perspective,
we can treat the process of graph structure denoising as
a form of regularization, which is aligned with the reg-
ularization technique that prevents neural networks from
overfitting [31]. Accordingly, the loss function for model
training can be reformulated as:

min Lann (A%, X, 0) +A[|A — A°l|F + A2l|AC]1, (14)
where A; and A2 control the regularization ratio. To solve
Eq. 14, an alternating optimization scheme with Adam is
used to iteratively update 8 and A°. As there is no parame-
ter learning during feature denoising, the feature smoothing
component will proceed before model training.

Discussions. In addition to introducing strong baselines
for evaluating future improvements to private learning on
graphs, our work suggests several open problems and di-
rections for future work:

In this work, the notion of edge-LDP is built upon the
randomized mechanism for the neighbor lists represented
by a binary vector. This assumption implies that every user
and the data curator know how many users and their in-
dexes. We leave the problem of designing new mechanisms
that satisfy edge-LDP when the users and the data curator
may not know the entire set of the users as future work.

As illustrated in Sec. 2.3, there are two variants of LDP
when applying LDP to graph data: node-LDP and edge-
LDP, both of which offer different kinds of privacy protec-
tion. In this work, we only consider edge-LDP and LDP
for node feature vectors. We believe that private learning
on graphs under the notion of node-LDP is a promising
direction as well.

Differentially private transfer learning has been studied
in prior work and has shown to be a natural candidate
for privacy-preserving machine learning in various do-
mains [10]. As illustrated in the work of Florian et al., [11],
the heuristic rule “better models transfer better” also holds
with differential privacy. Therefore, differentially private
graph learning with access to public data from a similar
domain may be a feasible solution to improve the privacy-
utility guarantees.

TABLE 3: Classification accuracy (%) with €, = 1, on various values of ¢,.

DATASET « | 7o | 73 | 75 7.7 7.9 8.0
BASE 509+3.8 | 54.9+37 | 572425 | 61.4+2.6 | 63.7+24 | 63.2+3.2
GRAPHSAGE | LPGNN || 625+1.6 | 69.24+1.6 | 729+2.3 | 747409 | 75.3+1.2 | 76.4+08
Cora Solitude || 66.4+ 1.7 | 72.4+1.2 | 75.840.9 | 76.7+1.1 | 77.9+ 0.6 | 79.0+0.6
BASE 60.8+2.0 | 63.1+34 | 648+3.7 | 66.9+40 | 68.1+4.0 | 68.6+3.8
GCN LPGNN || 67.941.2 | 694414 | 73.7+1.8 | 744405 | 75.7+1.0 | 76.34+0.9
Solitude || 68.4+23 | 72.6+1.4 | 75.2+12 | 76.1+05 | 77.3+0.9 | 77.84+0.5
BASE 350+ 1.8 | 39.1+1.3 | 423+15 | 445+1.2 | 45.7+ 1.8 | 445+ 1.9
GRAPHSAGE | LPGNN || 46.8+2.0 | 49.74+0.7 | 50.7+1.4 | 51.24+1.4 | 53.3+£0.9 | 545+ 1.2
CITESEER Solitude || 50.1+1.3 | 52.7+1.0 | 54.0+1.0 | 55.6+0.8 | 56.3+1.0 | 57.0+ 1.4
BASE 30.7+3.0 | 45.3+£1.8 | 483+29 | 49.6+1.3 | 525+2.1 | 52.8+2.5
GCN LPGNN || 478+ 1.1 | 50.14+1.8 | 523+1.2 | 53.74+1.3 | 556+ 1.3 | 55.6+ 1.5
Solitude || 49.8+ 1.4 | 53.4+1.0 | 55.14+0.8 | 56.4+1.5 | 58.2+0.7 | 58.0+2.5

€a 7.7 7.9 8.0 8.3 8.5 8.7
BASE 62.6+24 | 644418 | 66.5+1.9 | 71.241.9 | 720+20 | 755+ 1.4
GRAPHSAGE | LPGNN || 62.6+24 | 65.3+£5.8 | 68.3+24 | 73.34+3.2 | 74.6+£3.0 | 76.5+3.1
LASTEM Solitude || 65.5+7.1 | 69.4+54 | 71.6+24 | 77.2+1.7 | 77.2+1.4 | 79.0+1.5
BASE 60.5+25 | 632421 | 638420 | 66.9+1.1 | 685+15 | 69.6+ 1.6
GCN LPGNN || 62.3+7.2 | 682408 | 68.3+3.0 | 733424 | 76.9+2.9 | 79.5+08
Solitude || 60.9+2.6 | 68.9+2.1 | 68.0+4.7 | 7T51+1.7 | 77.5+1.9 | 789+ 1.3

4 EVALUATING PRIVACY-PRESERVING GNNs

4.1 Datasets and Experimental Setup

TABLE 4: Statistical Description of Used Datasets.

DATASET [#NODES|#EDGES|#CLASSES|#FEATURES|AVG. DEGREE

Cora | 2,708 | 5,278 7 1,433 3.90
CITESEER| 2,110 | 3,668 6 3,703 2.74
LASTFM| 7,083 |25,814| 10 7,842 7.29

Datasets. We conducted experiments over 3 datasets,
falling into two categories: citation networks and social
networks. For citation networks, we use Cora [29] and
CiteSeer [30], both of which are benchmarking datasets for
node classification. In these two datasets, nodes represent
scientific publications, and edges correspond to the citation
links. These two datasets contain bag-of-words feature vec-
tors for each publication; each publication has a class label.
For the real-world social networks, we use LastFM [32],
which is a dataset collected from a music streaming service,
in which nodes are users from Asian countries, and links
represent friendships. Its task is to predict the home country
of a user given the artists liked by them. As this dataset
was highly imbalanced, for fair comparisons, we limit the
classes to the top-10 ones with the most samples, as was
done in [15]. The detailed statistics of the used datasets are
described in Table 4.

Baselines. Our framework is the first effort towards
private learning over decentralized network graphs to the
best of our knowledge. We compare Solitude against the Base
methods including GCN [12] and GraphSage [5]. GCN and
GraphSage are two representative graph neural networks.
By evaluating our approach with various GNN backbones,

we can show that Solitude is able to preserve edge privacy
and node feature privacy by incorporating with any GNNs.
In particular, we use the same randomized mechanisms to
obfuscate the feature vectors and adjacency lists. The main
difference is that the base methods are directly trained over
the noisy graphs without any calibration process. For bet-
ter effectiveness demonstration, we also use an alternative
baseline — LPGNN [15]. This method assumes that the data
curator can access the global topology, and it was proposed
to preserve the privacy of the node features. Though the
setting of LPGNN and ours are different, to be comparable,
we adapt LPGNN into our setting by randomizing the
adjacency lists with our proposed mechanism and do not
consider the labels of the training samples as the private
information of the users. We argue that once the model
parameters are achieved, the data curator can obtain the
labels for any node by treating them as the model input as
long as the model is well trained.

Experimental Setup. We follow the data preprocessing
as reported in [15]. Specifically, for all datasets, we randomly
split each dataset into three portions: 50% for training, 25%
for validation, and 25% for the test. For the datasets with
node features, including Cora, CiteSeer, and LastFM, the
randomized mechanisms for LDP are applied to the node
features and the adjacency lists of all training, validation,
and test sets. All the GNN models, including the base
methods and the backbone models of LPGNN and Solitude,
consist of two graph convolution layers — each of which
has a hidden dimension of size 16 — and a SeLU activation
function [33] followed by dropout.

As for the evaluation metrics, we employ the standard
metric — classification accuracy on the test set (or called
prediction accuracy) under various privacy budgets — to
evaluate the generalization capability of the learning model.

80 ——s 65
x— . £
751 e — 601 80 — .
o/ — x ./;,—/‘—""

704 - 554 /o—/“/- _____ / _____ +
P S — e, . 754 g - o
K51 7 aemtm T Segl| e e 9 Pl
265 - e, | 50—/ - g 7 —

S Pt L > e L >0 | v T
860 " PP = g45{ -7 g e | 8 707 wpl s / it e .
] e +”"" _e— Solitude £,=1 g - __—===""Ze— Solitude &,=1 3 / e —e— Solitude e,=1
g551 - - e-==" Solitude £,=2 g 401 e Solitude &,=2 S 654 ¢ el ot Solitude &,=2
< T - —=— Solitude £,=0.5 < | T R +-=" " —a— Solitude £,=0.5 < o """ =~ Solitude £,=0.5
507 - —+— GraphSage &,=1 359 £l —+— GraphSage &,=1 N ot —+— GraphSage &,=1
45 —— GraphSage £,=2 301 —— GraphSage £,=2 60 et —+— GraphSage £,=2
—+— GraphSage £,=0.5 —+— GraphSage £,=0.5 ’,,/’ —+— GraphSage £=0.5
40+ T T T T T 25— T T T T T T T T T T T
7.0 7.2 7.4 7.6 7.8 8.0 7.0 7.2 7.4 7.6 7.8 8.0 7.8 8.0 8.2 8.4 8.6 8.8
Edge Privacy Budget &, Edge Privacy Budget &, Edge Privacy Budget &,
(a) GraphSage on Cora (b) GraphSage on Citeseer (c) GraphSage on LastFM
80
/“’ 80 —
» —

757 551 .;'/ /°/: "
$704 g . /;/w-__:; ~ 75 . 4 _______
= ;50_ ol g e

—¥ Prad
5 65 - 5 L gm //’ .
13) - Sol%tude =1 § - Sol%tude £e=1 é "0 T e~ Solitude 5:;1
< 60 Solitude &,=2 Z 451 Solftude =2 < _,,—’ - Solitude &,=2
—a— Solitude £,=0.5 —a— Solitude £,=0.5 65 e T e Solitude £4=0.5
—#— GCN g,=1 —#— GCN g,=1 e —4— GCNe=1
551 —— GCN &:=2 —— GCN &=2 -7 e GON &,=2
s —+— GCN £,=0.5 201 « —— GCN £,=0.5 60 —+— GCN 6,=0.5
7.0 7.2 7.4 7.6 7.8 8.0 7.0 7.2 7.4 7.6 7.8 8.0 78 80 82

Edge Privacy Budget &,

(d) GCN on Cora

Edge Privacy Budget &,

(e) GCN on Citeseer

8.4 8.6 8.8
Edge Privacy Budget &,

(f) GCN on LastFM

Fig. 4: Classification accuracy with different GNN architectures. The horizontal axes are different values of edge privacy
budgets. The vertical axes are the prediction accuracy of the test set. Solitude obtains significance gains on Cora, Citeseer,

and LastFM on various values of ¢, and ¢,.

L]
75 /
70 1 /0/. N
_65] —%=7
2 601 o
@
g .
2 554
E /./
50 -
15 /'/—0— Cora g,=1 £,=7.9
. —#— LastFM &,=1 g,=7.9
40 _/ —s=— Citeseer g,=1 £,=7.9

Label Ratzo(%)
Fig. 5: Classification accuracy under various label rates.
It shows that improving privacy-utility guarantees needs
more labeled samples.

10 20 40 50

Unless otherwise stated, all experiments are run 5 times
to ensure statistical significance. Specifically, we report the
mean and standard deviation values over 5 runs.

Parameter settings. For general hyperparameters, we ap-
plied a grid search to find the best choices: the learn-
ing rate, dropout rate, and weight decay were tuned
among {107%,1073,1072,107!}, the feature smoothing
steps [, and label smoothing steps [, were searched from
{0, 2, 4, 8}, and the coefficients of \; and Ay were searched
in {1075, 1074, 1073, 1072}. We used the Xavier initial-
izer [34] and the Adam SGD optimizer [35] for all models.
In addition, the maximum epoch was set as 500. For all ¢,
and ¢, pairs, we traversed all the parameters to get its opti-
mal performance in the experimental environment. Without
specification, we report the results under the hyperparam-
eters with the best performance overall. More specifically,

we use the best learning rate, weight decay, and dropout for
every €, and ¢, pairs. The selection rationality of the privacy
budgets is discussed below.

4.2 Experimental Results

We first investigate how Solitude performs under varying
feature and edge privacy budgets. In particular, the privacy
budget for the node features varies within {0.5, 1, 2}. The
maximum value of ¢, is selected based on the proposition
in [15], which indicates that in the high-privacy regime
€; < 2.18, the multi-bit mechanism perturbs at least one
random dimension. Similarly, for randomized response flip-
ping at least one edge of a node, the probability satisfies
D 1—1-% ﬁ, where |V| denotes the number of
nodes in the graph. Then, we can obtain ¢, < In(N — 1).
Therefore, we varies the edge privacy budgets within
{7.0,7.3,7.5,7.7,7.9,8.0} for two citation networks, and
{7.7,7.9,8.0,8.3,8.5,8.7,8.9} for LastFM. We first fix the
privacy budget for the features and compare the perfor-
mance under various edge privacy budgets. Table 3 re-
ports the classification accuracy of different methods when
€ = 1.

We can observe that our proposed framework consis-
tently achieves the best performance in most cases. Con-
cretely, Solitude has an improvement by up to 9.3% on
LastFM as compared to the base methods. As for the
two citation networks, our framework achieves significant
performance gain ranging from around 7.6% to 18.6% on
Cora, and from 5.2% to 15.1% on Citeseer comparing to the
base methods (see Table 3). The difference in performance
gains between LastFM and two citation networks implies

that lower degree networks enjoy more benefits from our
framework. The reason is that the randomized response
has a higher impact on the graphs with more sparseness.
Though LPGNN achieves comparable performance gains by
comparing with the base methods, it still falls behind our
framework in most cases. Note that LPGNN was designed
specifically to protect the privacy of node features, while
our framework can protect the node features and graph
structure information simultaneously. The performance gain
achieved by Solitude upon LPGNN indicates that the de-
noising component for graph structure is indeed effective in
reducing the effects of introduced noise due to the random-
ized flipping.

To further examine the effects of introduced noise in
the feature vectors, we evaluate the performance of our
framework with various privacy budgets for the node fea-
tures and the adjacency lists. Fig. 4 shows the classifica-
tion accuracy with different GNN architectures across three
datasets. We see Solitude achieves better performance in the
lower-privacy regime (with higher privacy budgets). This
can be explained by the fact that the predictions become
more accurate due to an increase in the privacy budget.
Interestingly, we also observe that Solitude achieves better
performance gains with higher privacy budgets for node
features when the edge privacy budget is fixed. The max-
imum performance gain is different across datasets and
privacy budgets. This result indicates that our denoising
mechanisms effectively mitigate the overfitting issue caused
by the introduced noise for privacy protection, improving
the model utility.

Essentially, for GNNSs to work, the smoothness assumption
has to hold. As the crux of GNNs for node classification
is to propagate features and labels throughout the network
graph. Inspired by this, we are interested in investigating
how the label rates affect the model utility with local differ-
ential privacy. In particular, label rate denotes the number
of labeled nodes for training divided by the total number
of nodes in each dataset. Fig. 5 depicts the classification
accuracy under various label rates. It shows that the predic-
tion accuracy consistently increases with the increase of the
label rates over all datasets. We can conclude that improving
privacy-utility guarantees needs more labeled nodes for
training.

5 RELATED WORK

Privacy-Preserving Analysis of Graph Statistics. Differen-
tial privacy (DP) has emerged as a de-facto standard for
privacy guarantees [7], [25]. Most existing work focuses
on centralized differential privacy [36], [37], and they are
specialized for analyzing the graph statistics, such as degree
distribution estimation [27], subgraph counts [36]. LDP is
a special case of differential privacy in the local model.
Each participant obfuscates their data portion locally and
then sends the obfuscated data to a data curator (possibly
a malicious third-party). Prior works on graph data with
LDP mainly focus on the estimations of graph statistics,
such as clustering coefficient estimation [9], heavy hitter
estimation [13], and frequency estimation [14].

Among others, some works are specialized for subgraph
counts [8], [38], such as triangles, 3-hop paths, and k-

9

cliques. Specifically, Sun et al. [38] proposes a multi-phase
framework under decentralized differential privacy, which
assumes that each user/data holder is aware of not only
her connections but also a broader subgraph in her local
neighborhood. Subsequently, Imola et al. [8] propose new
algorithms for triangle and k-star counts, assuming that
each user can only access her connections. LDPGen [17] was
proposed to generate synthetic graphs in the setting where a
data curator collects subgraphs from the participants under
the notion of edge differential privacy.

Privacy Leakage on GNNSs. There exists some prior
work on the privacy implication of training GNNs on
graphs [39]-[41]. Duddu et al. [40] analyzed the privacy
risks of graph embedding with various attacks, including
membership inference attacks, graph reconstruction attacks,
and attribute inference attacks. Later, Olatunji et al. [39]
proposed membership inference attacks under restricted
scenarios, by 0-hop query and 2-hop query to the victim
models. He et al. [41] showed that given various background
knowledge, the outputs of a GNN indeed could be utilized
to infer the rich information about the graph structure used
to train the model. They coined the attack “link stealing
attack.”

Privacy-Preserving Graph Learning with GNNs. There
is a research line that attempts to address privacy in graph
learning with federated learning [42], [43] and split learning,
which is orthogonal to our setting. The closest to ours
is LPGNN [15], wherein a set of mechanisms are pro-
posed to protect the privacy of node features. Specifically,
LPGNN assumes that a central server holds the global
graph topology, and the server is allowed to collect the
node features satisfying local differential privacy. It strives
to preserve the privacy of node features while maintaining
the generalization capability of the learned GNNs. How-
ever, the assumption of holding the global topology in the
central server hinders its practicality in many real-world
applications, where the privacy of the graph topology is of
paramount importance. Here we fill this gap and show the
effectiveness of our privacy-preserving learning framework
based on graph neural networks, with local differential
privacy guarantees.

6 CONCLUDING REMARKS

In this paper, we propose a new privacy-preserving learn-
ing framework for decentralized network graphs based on
graph neural networks, called Solitude. It can simultane-
ously preserve edge privacy and node feature privacy for
every user and seamlessly incorporate with any GNN archi-
tectures, such as GCN and GraphSage, with privacy-utility
guarantees. The key of Solitude is a set of new mechanisms
that can calibrate the introduced noise in the decentralized
graph to mitigate the overfitting problem while learning
over noisy graphs. Theoretical analysis and extensive exper-
iments on benchmarks have demonstrated the rationality
and effectiveness of our proposed mechanisms as compared
to the alternative baselines.

Due to the inherent limitations of current differential
privacy formalisms for graph learning, our design needs a
certain amount of privacy budget to have a comparative
learning performance. We hope our study pushes forward

the progress on privacy-preserving GNNs under local dif-
ferential privacy. There are many possible directions for
future work, such as establishing novel formalisms of local
differential privacy, i.e., edge differential privacy, specifi-
cally for graph learning. We leave this in our future work.

7

ACKNOWLEDGMENTS

Wanyu Lin has been supported by the Research Fund
at The Hong Kong Polytechnic University P0035763 and
P0042687. Cong Wang has been supported by the Research
Grants Council of Hong Kong under Grant CityU 11217620,
N_CityU139/21, and RFS2122-1S04. The assistance pro-
vided by Yuteng Sun from the Chinese University of Hong
Kong was greatly appreciated.

REFERENCES

(1]

(2]

(3]

(4]

(5]

6]

(7]

(8]

(9]

[10]

[11]

(12]

[13]

[14]

[15]

[16]

[17]

K. Rusek, J. Sudrez-Varela, P. Almasan, P. Barlet-Ros, and
A. Cabellos-Aparicio, “RouteNet: Leveraging Graph Neural Net-
works for Network Modeling and Optimization in SDN,” IEEE
Journal on Selected Areas in Communications, vol. 38, no. 10, pp.
22602270, 2020.

M. Zitnik, M. Agrawal, and J. Leskovec, “Modeling Polypharmacy
Side Effects with Graph Convolutional Networks,” Bioinformatics,
vol. 34, no. 13, pp. i457-i466, 2018.

M. Zitnik and]. Leskovec, “Predicting Multicellular Function
Through Multi-Layer Tissue Networks,” Bioinformatics, vol. 33,
no. 14, pp. i190-i198, 2017.

J. Zhou, Z. Xu, A. M. Rush, and M. Yu, “Automating Botnet De-
tection with Graph Neural Networks,” in AutoML for Networking
and Systems Workshop of MLSys 2020 Conference, 2020.

W. Hamilton, Z. Ying, and J. Leskovec, “Inductive Representation
Learning on Large Graphs,” in Proc. Advances in Neural Information
Processing Systems (NeurIPS), 2017.

F. Wu, Y. Long, C. Zhang, and B. Li, “LINKTELLER: Recovering
Private Edges from Graph Neural Networks via Influence Analy-
sis,” in Proc. of the Symposium on Security and Privacy, 2021.

J. C. Duchi, M. I. Jordan, and M.]. Wainwright, “Local Privacy and
Statistical Minimax Rates,” in Annual Symposium on Foundations of
Computer Science. 1EEE, 2013.

J. Imola, T. Murakami, and K. Chaudhuri, “Locally Differentially
Private Analysis of Graph Statistics,” in Proc. {USENIX} Security
Symposium ({USENIX} Security), 2021.

Q. Ye, H. Hu, M. H. Au, X. Meng, and X. Xiao, “LF-GDPR: A
Framework for Estimating Graph Metrics with Local Differential
Privacy,” IEEE Transactions on Knowledge and Data Engineering,
2020.

M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, 1. Mironov,
K. Talwar, and L. Zhang, “Deep Learning with Differential Pri-
vacy,” in Proc. the ACM SIGSAC Conference on Computer and Com-
munications Security (CCS), 2016.

T. Florian and B. Dan, “Differentially Private Learning Needs Bet-
ter Features (or Much More Data),” in Proc. International Conference
on Learning Representations (ICLR), 2021.

T. N. Kipf and M. Welling, “Semi-Supervised Classification with
Graph Convolutional Networks,” in Proc. International Conference
on Machine Learning (ICML), 2017.

Z. Qin, Y. Yang, T. Yu, I. Khalil, X. Xiao, and K. Ren, “Heavy
Hitter Estimation over Set-Valued Data with Local Differential
Privacy,” in Proc. the ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2016.

T. Wang, J. Blocki, N. Li, and S. Jha, “Locally Differentially Private
Protocols for Frequency Estimation,” in Proc. {USENIX} Security
Symposium ({USENIX} Security), 2017.

S. Sajadmanesh and D. Gatica-Perez, “Locally Private Graph
Neural Networks,” in Proc. the ACM Conference on Computer and
Communications Security (CCS), 2021.

D. Konforty, Y. Adam, D. Estrada, and L. G. Meredith, “Synereo:
the Decentralized and Distributed Social Network,” 2015.

Z. Qin, T. Yu, Y. Yang, I. Khalil, X. Xiao, and K. Ren, “Generat-
ing Synthetic Decentralized Social Graphs with Local Differential
Privacy,” in Proc. the ACM SIGSAC Conference on Computer and
Communications Security (CCS), 2017.

(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

10

C. Dwork, A. Roth et al., “The Algorithmic Foundations of Differ-
ential Privacy,” Found. Trends Theor. Comput. Sci., vol. 9, no. 3-4, pp.
211-407, 2014.

B. Ding, J. Kulkarni, and S. Yekhanin, “Collecting Telemetry Data
Privately,” in Proc. Advances in Neural Information Processing Sys-
tems (NeurIPS), 2017.

D. Zhu, Z. Zhang, P. Cui, and W. Zhu, “Robust Graph Convolu-
tional Networks against Adversarial Attacks,” in Proc. the ACM
SIGKDD International Conference on Knowledge Discovery & Data
Mining (KDD), 2019.

Y. Bengio, O. Delalleau, and N. Le Roux, “Label Propagation and
Quadratic Criterion,” 2006.

D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schélkopf,
“Learning with Local and Global Consistency,” in Proc. Advances
in Neural Information Processing Systems (NeurIPS), 2004.

Tencent, “Wechat: Connecting a Billion People with Calls, Chats,
and More,” https:/ /www.wechat.com.

Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip,
“A Comprehensive Survey on Graph Neural Networks,” IEEE
Transactions on Neural Networks and Learning Systems, vol. 32, no. 1,
pp. 4-24, 2020.

S. Raskhodnikova, A. Smith, H. K. Lee, K. Nissim, and S. P.
Kasiviswanathan, “What Can We Learn Privately,” in Proc. the
Symposium on Foundations of Computer Science. 1EEE, 2008.

J. Blocki, A. Blum, A. Datta, and O. Sheffet, “The Johnson-
Lindenstrauss Transform Itself Preserves Differential Privacy,” in
Proc. the Symposium on Foundations of Computer Science. 1EEE, 2012.
W.-Y. Day, N. Li, and M. Lyu, “Publishing Graph Degree Distri-
bution with Node Differential Privacy,” in Proc. the International
Conference on Management of Data (SIGMOD), 2016.

J. You, J. M. Gomes-Selman, R. Ying, and]. Leskovec, “Identity-
Aware Graph Neural Networks,” in Proc. the AAAI Conference on
Artificial Intelligence, 2021.

A. K. McCallum, K. Nigam, J. Rennie, and K. Seymore, “Automat-
ing the Construction of Internet Portals with Machine Learning,”
Information Retrieval, vol. 3, no. 2, pp. 127-163, 2000.

C. L. Giles, K. D. Bollacker, and S. Lawrence, “Citeseer: An
Automatic Citation Indexing System,” in Proc. the ACM Conference
on Digital Libraries, 1998.

J. Kukavcka, V. Golkov, and D. Cremers, “Regularization for Dee
Learning: A taxonomy,” arXiv preprint arXiv:1710.10686, 2017.

B. Rozemberczki and R. Sarkar, “Characteristic Functions on
Graphs: Birds of a Feather, from Statistical Descriptors to Paramet-
ric Models,” in Proc. the ACM International Conference on Information
& Knowledge Management, 2020.

G. Klambauer, T. Unterthiner, A. Mayr, and S. Hochreiter, “Self-
Normalizing Neural Networks,” in Proc. Advances in Neural Infor-
mation Processing Systems (NeurIPS), 2017.

X. Glorot and Y. Bengio, “Understanding the Difficulty of Training
Deep Feedforward Neural Networks,” in Proc. International Con-
ference on Artificial Intelligence and Statistics, 2010, pp. 249-256.

D. P.Kingma and J. Ba, “Adam: A Method for Stochastic Optimiza-
tion,” in Proc. International Conference on Learning Representations
(ICLR), 2015.

V. Karwa, S. Raskhodnikova, A. Smith, and G. Yaroslavtsev, “Pri-
vate Analysis of Graph Structure,” Proc. the VLDB Endowment,
vol. 4, no. 11, pp. 1146-1157, 2011.

Y. Wang, X. Wu, and L. Wu, “Differential Privacy Preserving Spec-
tral Graph Analysis,” in Proc. Pacific-Asia Conference on Knowledge
Discovery and Data Mining. Springer, 2013.

H. Sun, X. Xiao, I. Khalil, Y. Yang, Z. Qin, H. Wang, and T. Yu,
“Analyzing Subgraph Statistics from Extended Local Views with
Decentralized Differential Privacy,” in Proc. the ACM SIGSAC
Conference on Computer and Communications Security (CCS), 2019.

I. E. Olatunji, W. Nejdl, and M. Khosla, “Membership Inference
Attack on Graph Neural Networks,” in 2021 Third IEEE Interna-
tional Conference on Trust, Privacy and Security in Intelligent Systems
and Applications (TPS-ISA). 1EEE, 2021, pp. 11-20.

V. Duddu, A. Boutet, and V. Shejwalkar, “Quantifying Privacy
Leakage in Graph Embedding,” in Mobiquitous 2020-17th EAI In-
ternational Conference on Mobile and Ubiquitous Systems: Computing,
Networking and Services, 2020, pp. 1-11.

X. He, J. Jia, M. Backes, N. Z. Gong, and Y. Zhang, “Stealing
Links from Graph Neural Networks,” in 30th {USENIX} Security
Symposium ({USENIX} Security 21), 2021.

C. Meng, S. Rambhatla, and Y. Liu, “Cross-Node Federated Graph
Neural Network for Spatio-Temporal Data Modeling,” in Proc. the

ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining (KDD), 2021.

[43] C.He, K. Balasubramanian, E. Ceyani, Y. Rong, P. Zhao, J. Huang,
M. Annavaram, and S. Avestimehr, “FedGraphNN: A Federated
Learning System and Benchmark for Graph Neural Networks,” in
Workshop on Graph Neural Networks and Systems, 2021.

Wanyu Lin received her Ph.D. degree from the
Department of Electrical and Computer Engi-
neering at the University of Toronto. She re-
ceived her B.Engr. degree from the School
of Electronic Information and Communications,
Huazhong University of Science and Technol-
ogy, China and her MPhil. degree from the De-
partment of Computing, The Hong Kong Poly-
technic University. Her research interests include
graph machine learning, trustworthy machine
learning, data privacy, and model interpretability.
She has served as associate editor for IEEE Transactions on Neural
Networks and Learning Systems (TNNLS). She is a member of IEEE.

Baochun Li received his B.Engr. degree from
the Department of Computer Science and Tech-
nology, Tsinghua University, China, in 1995 and
his M.S. and Ph.D. degrees from the Department
of Computer Science, University of lllinois at
Urbana-Champaign, Urbana, in 1997 and 2000.
Since 2000, he has been with the Department of
Electrical and Computer Engineering at the Uni-
versity of Toronto, where he is currently a Profes-
sor. He holds the Bell Canada Endowed Chair
in Computer Engineering since August 2005.
His research interests include cloud computing, distributed systems,
datacenter networking, and wireless systems. He was the recipient of
the IEEE Communications Society Leonard G. Abraham Award in the
Field of Communications Systems in 2000. In 2009, he was a recipient
of the Multimedia Communications Best Paper Award from the IEEE
Communications Society, and a recipient of the University of Toronto
McLean Award. He is a member of ACM and a Fellow of IEEE.

Cong Wang is a Professor in the Department
of Computer Science, City University of Hong
Kong. His research interests include data and
network security, blockchain and decentralized
applications, and privacy-enhancing technolo-
gies. He has been one of the Founding Mem-
bers of the Young Academy of Sciences of Hong
Kong since 2017, and has been conferred the
RGC Research Fellow in 2021. He received
the Outstanding Researcher Award in 2019, the
Outstanding Supervisor Award in 2017 and the
President’s Awards in 2019 and 2016, all from City University of Hong
Kong. He is a co-recipient of the Best Paper Award of IEEE ICDCS
2020, ICPADS 2018, MSN 2015, the Best Student Paper Award of IEEE
ICDCS 2017, and the IEEE INFOCOM Test of Time Paper Award 2020.
His research has been supported by multiple government research
fund agencies, including National Natural Science Foundation of China,
Hong Kong Research Grants Council, and Hong Kong Innovation and
Technology Commission. He has served as an associate editor for IEEE
Transactions on Dependable and Secure Computing (TDSC), IEEE
Transactions on Services Computing (TSC), IEEE Internet of Things
Journal (loT-J), IEEE Networking Letters, and The Journal of Blockchain
Research, and TPC co-chairs for a number of IEEE conferences and
workshops. He is a Fellow of IEEE and a member of ACM.

11

