
Medley: Predicting Social Trust
in Time-Varying Online Social Networks

Wanyu Lin, Baochun Li
University of Toronto, wanyu.lin@mail.utoronto.ca, bli@ece.toronto.edu

Abstract—Social media, such as Reddit, has become a norm
in our daily lives, where users routinely express their attitude
using upvotes (likes) or downvotes. These social interactions may
encourage users to interact frequently and form strong ties of
trust between one another. It is therefore important to predict
social trust from these interactions, as they facilitate routine
features in social media, such as online recommendation and
advertising.

Conventional methods for predicting social trust often accept
static graphs as input, oblivious of the fact that social interactions
are time-dependent. In this work, we propose Medley, to explicitly
model users’ time-varying latent factors and to predict social
trust that varies over time. We propose to use functional time
encoding to capture continuous-time features and employ atten-
tion mechanisms to assign higher importance weights to social
interactions that are more recent. By incorporating topological
structures that evolve over time, our framework can infer
pairwise social trust based on past interactions. Our experiments
on benchmarking datasets show that Medley is able to utilize
time-varying interactions effectively for predicting social trust,
and achieves an accuracy that is up to 26% higher over its
alternatives.

I. INTRODUCTION

Social media platforms have become indispensable in our
daily lives. Users routinely express their attitude towards a post
or service while interacting with another user in these online
platforms. Interactions with positive views, such as upvotes
and likes, may encourage social interactions between users,
which build stronger ties of trust. These established ties of
trust form a prevalent yet complex force that drives our social
decisions and can be leveraged to market services or make
recommendations.

Inferring trust between a pair of users is an essential aspect
of characterizing and understanding the underlying online
social networks. By inferring trust in these online social
networks, providers of social media platforms—such as Reddit
or Twitter—can encourage positive (or discourage disruptive)
user behavior. They can take preemptive actions by introducing
new products or services if such ties of trust are found below
a certain threshold.

Deep learning models [1], [2] have played an increasingly
critical role for evaluating social trust, as they are used to
learn low-dimensional embeddings for the users in online
social networks. Representations learned using deep learning
models can complement or even replace traditional evaluation

This research was supported in part by the NSERC Discovery Research
Program.

k

j

u

y

v

i

x

l

n

3

2

5
52

5
4

3

3

3 5

2
2

m
3

w

Fig. 1. A motivating example for time-aware social trust prediction (best
viewed in color): The graph represents observed interactions during time
interval [0, T]. User u and v are the target users to provide trust levels for
at time T + ∆(T). The dashed and solid arrows denote interactions formed
at time t1 and t2, respectively, where 0 < t1 < t2 ≤ T . The numbers are
observed trust levels correspondingly.

algorithms to establish social trust, such as matrix factorization
techniques [3], [4]. Among others, graph neural networks
(GNNs), used for supervised learning on graph-structured data,
have yielded impressive results in these domains, mainly due
to their efficiency and capability of inductive learning [2],
[5]. In particular, Guardian [2] proposed a framework to
characterize propagation rules of social trust automatically,
using the notion of localized graph convolutions [6].

Although these mechanisms provided reasonable perfor-
mance, one major deficiency lies in their common assumption
that the underlying social networks are static, omitting the
fact that social interactions in online social networks are time-
varying. Due to the evolving nature of online social networks
over time, the strength of established trust can increase or
decrease with new interactions; they may also decay with
time. As shown in Fig. 1, there are multiple interactions
formed between user u and v at different times, denoted
with solid (new interactions) and dashed arrows (old ones).
Existing models [1], [2] focused on a particular snapshot of
the social interaction graph and failed to consider its time-
varying features.

Ignoring time-varying dynamics in social networks can
severely reduce the efficacy and optimality of existing so-
lutions. For instance, if time information is not considered,
models may mistakenly utilize future interactions to infer past
ties of trust during training and testing. Therefore, it is critical
to capture time features of social interactions explicitly. In

this work, we aim to infer trust between any two users based
on past interactions in an online social network, explicitly
incorporating associated timing information.

For a user (which is represented by a node in the social
graph), it is natural to encode timing information along with
other essential features. By applying the notion of localized
trust convolution [2], the representations learned may well
capture the evolving property of online social networks over
time. However, encoding timing information is non-trivial
since time is a continuous variable. Thus, our first challenge
is to map the continuous-time domain into a vector space.
In addition, new interactions are typically more important
than old ones, as early interactions may become obsolete
or irrelevant. We propose that different weights should be
assigned while establishing the trust ties, e.g., more recent
interactions should have higher weights for contributing to a
tie of trust. Therefore, the second challenge is to find ways
of discriminating the importance of social interactions formed
over time, such that social trust can be well quantified in online
social networks.

Considering the limitations of existing work, it is essential
to develop a new model that can exploit time-varying social
interactions for trust prediction in an efficient, explicit, and
end-to-end manner. In this paper, inspired by the recent success
of neural networks on learning graphs, we propose Medley, an
end-to-end framework to discover hidden and predictive time-
aware trust signals in online social networks, by incorporating
graph attention mechanisms and functional time encoding into
a unified framework. In Medley, we propose an attentive-
trust propagation network, which is equipped with attention
mechanisms to discriminate the importance of time-varying
interactions. Toward this end, time-aware trust signals can
be characterized by incorporating topological structures that
evolve over time. Specifically, we represent both social inter-
actions and the associated time domain in a latent space. To
achieve this goal, we first apply the functional time encoding
to map the continuous-time domain into a vector space, based
on the classical Bochner’s theorem from harmonic analysis [7].

We demonstrate the effectiveness of our proposed frame-
work using two representative web-of-trust social networking
systems: Bitcoin-Alpha and Bitcoin-OTC. We instantiate our
attentive-trust propagation network with different attention
operators, the inner product and the concatenation operator.
We then compare Medley with Guardian [2], a state-of-the-art
social trust evaluation model. Our extensive array of experi-
ments on benchmarking datasets suggests that Medley can well
capture the latent factors of time-varying interactions with an
accuracy that is 27% higher than Guardian [2], showing the
effectiveness of our proposed framework. We also empirically
show that the choice of attention operators is critical. In
general, when instantiated with the inner product operator,
Medley achieves the best overall performance compared to
existing work.

TABLE I
MATHEMATICAL NOTATIONS

Notation Descriptions

|C| the number of trust levels

Nu(T) the neighborhood of node u

during time interval [0, T]

ec embedding of trust level c

xu initial embedding of user u

dh, dt, dc the dimension of user embedding, time embedding

and interaction embedding

hu the latent representation of user u

huv the hidden trust signals between user u and v

h̃uv predicted trust strength

cuv the ground-truth of trust strength

‖ the concatenation operator

⊕ weight mean aggregator

σ non-linear functions, e.g., LeakyReLU(·), softmax(·)

W , b the model parameters (weight matrices and bias)a

aTo simplify our notations, we unify all of the trainable matrices
and learnable biases as W and b, respectively.

II. PREDICTING SOCIAL TRUST

In this paper, we consider the problem of predicting social
trust in a time-varying online social network, modeled as a
sequence of timestamped interaction events in a social graph,
denoted as G = {e(t1), e(t2), · · · }, where e(ti) represents a
social interaction between a pair of nodes in the social graph
at time ti. More precisely, an interaction between nodes u
and v formed at time t is represented as a directed edge
euv(t). We also define C = {c1, c2, c3, · · · } as the set of
trust levels. Examples of such online social networks with
support for trust levels include Bitcoin-OTC1 and Pretty-Good-
Privacy2 (PGP), where C ={trust, distrust} in Bitcoin-OTC
and C ={Observer, Apprentice, Journeyer, Master} in PGP.

Let E(T) = {〈u, v〉 : ∃ euv(t) ∈ G, t ≤ T} be the time-
varying set of social interactions and V(T) = {i : ∃ vi(t) ∈
G, t ≤ T} be the time-varying set of users in a given online
social graph G. Without loss of generality, we assume that
the time domain is represented as the time interval [0, T],
where T is determined by the observed social graph. Nu(T) =
{v : ∃ euv(t) ∈ E(T), t ≤ T} denotes the neighborhood
of node u during the time interval [0, T]. To model timing
information, a mapping function that can map the continuous-
time domain into a vector space is defined as Ψ : t → Rdt ,
e.g, the encoding of time point t1 is denoted as Ψ(t1). These
social networks are evolving, where nodes and edges change
over time.

1https://www.bitcoin-otc.com
2http://networkrepository.com/arenas pgp.php

We will now formally define the problem of social trust
prediction in a time-varying online social network. Given
G(T) = (E(T),V(T)), each observed interaction is presented
as {(〈u, v〉, t, c) | euv ∈ E(T), t ≤ T, c ∈ C}, the problem of
predicting social trust seeks to infer the trust level between
any two users at time T + ∆(T). Specifically, the prediction
model aims to quantify the probability distribution of the trust
levels after a given time interval.

P =
(
c(T+∆(T))
uv |G(T)

)
(1)

For simplicity, we use ecuv(t) to denote an observed interaction
that u trusts v with level c at time t, t ≤ T and cuv
denotes the ground truth of the corresponding trust level. The
mathematical notations used in this paper are summarized in
Table I.

Throughout this paper, we use a toy example to illustrate
the problem of time-aware social trust prediction. Fig. 1 shows
a social interaction graph observed in the time interval [0, T],
where nodes represent users, directional edges denote the inter-
actions of user pairs, and the numbers are the associated trust
levels. The dashed and solid arrows represent the interactions
formed at time t1 and t2, respectively, where 0 < t1 < t2 ≤ T .
Our goal is to infer whether or not u trusts v — and to what
extent if such trust exists — at time T + ∆(T).

III. PRELIMINARIES

Graph Attention (GAT) [8] is a recent proposed technique
that introduces the attention mechanism into graph convo-
lutional networks. It explicitly assigns different importance
values to nodes in the same neighborhood graph. Specifically,
an attention coefficient aij is first computed by an attention
function attn : Rd×Rd → R, which measures the importance
of node j to node i:

aij ← attn (Whi, Whj) (2)

A softmax function is adopted to normalize attention coef-
ficients:

ãij ← softmax (aij) =
exp (aij)∑

k∈Ni
exp (aik)

(3)

In essence, such an attention coefficient is used to capture
the importance of an edge. With these coefficients, the final
output features for each node then can be obtained by a linear
combination of the features corresponding to them:

hi ← σ

∑
j∈Ni

ãij W hj

 (4)

where σ is a non-linear activation function, such as softmax
shown in Eq. (3).

Theorem 1 (Bochner’s Theorem [9]). A continuous,
translation-invariant kernel K(t1, t2) = Φ(t1 − t2) on Rdt

is positive definite if and only if there exists a non-negative

++

y…v u

avv(l-1) avu(l-1) avy(l-1)

mvy
(l-1)

mvv
(l-1) mvu

(l-1)

hvhu

…

auu(l-1) auv(l-1) auw(l-1)

v wu

attn

At
te

nt
iv

e
Tr

us
t P

ro
pa

ga
tio

n
La

ye
r

Tr
us

t
Pr

ed
ic

tio
n

La
ye

r

X

+ +

muw
(l-1)muu

(l-1) muv
(l-1)

Multi-Layer Perception

Em
be

dd
in

g
La

ye
r

xvxu

Fig. 2. Illustration of Medley: an embedding layer that offers an initialization
of user representations, multiple attentive trust propagation layers, followed
by a trust prediction layer instantiated with a multi-layer perception. The gray
block “attn” represents the attention mechanism. User u and v are the target
users for trust prediction.

measure on R such that Φ is the Fourier transform of the
measure.

Bochner’s theorem suggests that when scaled properly, the
kernel function Φ(t1 − t2) can be expanded as:

K(t1, t2) = Φ(t1 − t2)

=

∫
R
ei ω(t1−t2) p(ω) dω = Eω [ηω(t1) ηω(t2)]

(5)

where ηω(t) = ei ωt. Both K and the probability p(ω) are
real, thus an alternative expression of Eq. (5) can be:

K(t1, t2) = Eω [cos(ω (t1 − t2))]

= Eω [cos(ω t1) cos(ω t2) + sin(ω t1) sin(ω t2)]
(6)

As suggested by Rahimi & Recht [10], Eq. (6) can be further
approximated with Monte Carlo integral:

K(t1, t2) ≈ 1

dt

dt∑
i=1

cos(ωit1) cos(ωit2) + sin(ωit1) sin(ωit2)

(7)

where {ωi| i ∈ [1, dt]} are samples drawn from P(ω).

IV. MEDLEY: DESIGN AND ALGORITHMS

In this section, we formally propose Medley, a deep
learning-based model, to learn the time-varying dynamics of
social interactions for predicting social trust in an end-to-end
fashion. In what follows, we first introduce the intuition and
then further describe the technical details of Medley.

In essence, the key component of Medley is the notion of
graph attention mechanism (GAT) [8]. GAT is initially de-
signed to recognize the relevant pieces of neighborhood infor-
mation. In specific, the graph attention mechanism explicitly
assigns different importance weights to neighbor nodes when
aggregating node features. In online social networks, user-
user interactions are created over time; multiple interactions
between two users may be built in different time spans, as
shown in Fig 1. New interactions are typically more important
than old ones, as early interactions may become obsolete or
irrelevant. Thus, we anticipate that different weights should
be assigned while establishing the trust relationship, e.g., more
recent interactions should have higher weights for contributing
to a trust tie. For this purpose, we adapt graph-attention
mechanism to capture relevant pieces of the time-varying
neighborhood information, including established social inter-
actions, associated timestamps, and user feature information.

To generate the time-aware embedding for a node 3, we
apply a functional time encoding technique to map the
continuous-time into the vector space, which then can be in-
corporated into the user feature information and corresponding
social interactions. With this particular encoding for the time
domain, each graph attention module will allow us to learn
how to aggregate information, including user feature informa-
tion, timing information, and corresponding social interactions,
from a small graph neighborhood. By stacking multiple graph
attention modules, our framework is able to propagate the local
features across the entire social graph. Importantly, parameters
of these localized graph attention modules are shared across
all nodes, making the parameter complexity of our approach
independent of the input graph size.

In a nutshell, Medley consists of three components: an
embedding layer that offers an initialization of the user fea-
ture information, multiple attentive trust propagation layers
followed by a trust prediction layer. The prediction layer is
implemented with a multi-layer perception. The architecture
illustration is shown in Fig. 2.

A. Embedding Layer

Following mainstream deep learning-based approaches,
such as [2], we describe a user u with an embedding vector
xu ∈ Rdh , where dh denotes the embedding dimension. To be
more specific, user embeddings are generated based on users’
social ties (or friendship), which were created whenever two
users interact. As indicated by social correlation theories [11],
[12], users’ social behaviors, such as interactive behaviors with
others, are similar to or influenced by their directly connected
friends. Widely used pre-trained models for user embeddings
are node2vec [13] and DeepWalk [14]. These user embeddings
are used as the initial states of user representations.

B. Attentive Trust Propagation

Notably, our goal is to discover hidden and predictive trust
signals in a time-varying social interaction graph. In general,

3This paper uses the words “node” and “user” interchangeably.

an interaction graph contains not only interactions between
users but also the timestamps of associated interactions. A
user can express his/her attitudes (or opinions), denoted as
c, to anther user during user-user interaction at time t. In
other words, the learned trust signals should capture user
information, the interactions between users and the timestamps
of established social interactions.

Time modeling. To extract the features from the times-
tamps, we utilize a mapping function Ψ : t → Rdt to map the
continuous time domain into a vector space with dimension
dt. As suggested by Xu et al. [7], Ψ(t) can be estimated with
a finite sequence formulated as:

Ψ(t)←
√

1

dt
[cos(ω1t), sin(ω1t), · · · , cos(ωdt

t), sin(ωdt
t)]

(8)
where {ωi| i ∈ [1, dt]} are samples drawn from distribution
P(ω). With this approximation, given two time points t1, t2,
the inner product of their time encodings, denoted as Ψ(t1) ·
Ψ(t2)ᵀ, is exactly equal to K (t1, t2) in Eq. (7). According
to Bochner’s theorem, the mapping function learning problem
then can be converted to the problem of distribution learning,
i.e. p(ω). The detailed definition of P(ω) can be referred to as
the illustration in Theorem 1. In our framework, Medley, the
parameters of the distribution learning are jointly optimized
as part of the whole model in an end-to-end fashion.

Interaction modeling. The actual type of interactions, such
as trust/distrust, reveals the attitude from one user to another.
More positive interactions, for example, may encourage users
to interact more frequently and form stronger trust among
users. These interactions implicitly indicate the trust signals
among users, and therefore, they should be considered for
predicting trust ties. In particular, we introduce an interaction
embedding vector, denoted as ec ∈ Rdc , to model the social
interactions, where c ∈ {c1, c2, c3, · · · }. More specifically,
we use one-hot encoding to represent each level of trust. For
example, C ={trust, distrust}, we model them as the following
one-hot representations: [0, 1]T and [1, 0]T . Then a multi-layer
perception is used to convert the one-hot encodings into dense
vector embeddings through Eq. 9.

ecuj ←
(
W c · ecuj

)
(9)

Recall that our ultimate goal is to leverage user features,
social interactions, and associated time features to identify
time-aware trust signals over time-varying social graphs. With
the information modeling above, we build upon the message-
passing architecture of graph neural networks [6], [8], [15],
particularly graph attention networks, to distill comprehensive
patterns of social interactions over time. In the following, we
first describe the design of one-layer attentive trust propaga-
tion, and then generalize it to multiple successive layers for
high-order trust propagation.

First-order attentive trust propagation. For an interaction
established at time t between user u and user j with type c,
we model the message from j to u, denoted as muj , with a
combination of user j’s embedding hj (hj = xj for the first

u vtuv
3

u tuw
3 w

… Time
modelling

Interaction
modelling

User
 representations

Multi-Layer
Perception

Functional Time
Encoding

User
modelling

muwmuv

…

Fig. 3. An illustration of message modeling in the local neighborhood,
including the functional time encoding and interaction modeling. For a target
user, e.g., u, each of its interactions is transformed into a message containing
three components: user representations, time embedding, and interaction
representation.

layer), time embedding Ψ(t) and the interaction embedding
ecuj with concatenation operation.

muj ←
(
hj ‖ Ψ(tuj) ‖ ecuj

)
(10)

Analogously, muj can be interpreted as the message that
u consumes from j for quantifying u’s attitude to others.
Let’s see an example in our example social network graph,
originally shown in Fig. 1. For the target user u, its local
interactions include e

(3)
uw(tuw), e

(5)
uk (tuk), e

(3)
uv (tuv). Messages

from these interactions can be obtained via message modeling,
as illustrated in Fig 3. Built upon this basis, we can aggregate
the messages from the neighborhoods to fully capture the
interaction pattern of user u. Mathematically, this process can
be presented as:

hu ← σ (Aggregate ({muj ,∀j ∈ Nu(T)}) · W + b) (11)

where W, b are trainable parameters.
As suggested by [2], the mean-based aggregator, a linear

approximation of a localized spectral convolution [15], is an
alternative operator for aggregation. It assumes that all inter-
actions contribute equally to distill comprehensive information
about user u. However, this may not be optimal because social
influence from other users may vary dramatically, and their
effects may diminish over time. Consequently, an effective
learning model should allow to assign different weights to
distinguish the relative importance of different interactions.

To alleviate the constraint of mean-based aggregator, we
perform an attention mechanism to extract the interactions that
are important to influence user u. To be more specific, Eq. (11)
can be reformulated as:

hu ← σ

 ∑
j∈Nu(T)

ãuj muj

 ·W + b

 (12)

where ãuj denotes the attention weight of the interaction with
user j in contributing to user u’s trust latent factor.

Alternative attention operators can be the inner product or
concatenation. Concretely, we can use the inner product (or
concatenation) of the message from j to u and the target

user’s own hidden message, to measure the importance of the
interaction between u and j. Note that, user u’s message,
denoted as muu, is obtained by feeding its hidden repre-
sentation hu to a multi-layer perception (MLP). An analogy
of this operator can be the similarity of users’ interests. If
two users have more common interests, there might be more
interaction effects. Mathematically, auj , instantiated with the
inner product operator, is formulated as:

auj ← attn (muj Wuj , huWu) = muj Wuj · (huWu)
ᵀ

(13)
where Wuj ∈ R(dh+dt+dc)×dh ,Wu ∈ Rdh×dh are the train-
able matrices that are used to distill useful interaction patterns
for propagation, hu = xu for the first layer. To obtain the
relative importance of a particular interaction for user u, we
use softmax to normalize the attentive value from Eq. (13).
Then the final attention is formulated as:

ãuj ←
exp (auj)∑

j∈Nu(T) exp (auj)
(14)

Above completes the definition of single-head graph atten-
tion. We further apply multi-head attention, as suggested by
Velickovic et al. [8]. The multi-head attention mechanism
performs K independent single-head attentions in parallel, i.e
h

(i)
u , i = 1, · · · , K. We use concatenation aggregator, ‖ to

aggregate these K outputs from K different heads, formulated
as:

hu ←‖K σ

 ∑
j∈Nu(T)

ãuj muj

 ·W + b

 (15)

High-order attentive trust propagation. With the first-
order trust propagation modeling, we can explore high-order
social interactions by staking multiple attentive trust propaga-
tion layers. Such high-order propagation is crucial to encode
comprehensive trust signals to estimate the trust strength be-
tween any pair of users. Concretely, by stacking l propagation
layers, a user can receive the messages propagated from its
l-hop neighbors.

To generalize the first-order trust propagation to high-order
counterparts, we reformulate Eq. (10) and Eq. (13)-(15) as
follows:

ml
uj ←

(
h

(l−1)
j ‖ Ψ(tuj)

l−1 ‖ ecuj
)

(16)

aluj ← ml
uj W

l
uj ·

(
h(l−1)
u W l

u

)ᵀ
(17)

ãluj ←
exp

(
aluj
)∑

j∈Nu(T) exp
(
aluj
) (18)

hlu ←‖K σ

 ∑
j∈Nu(T)

ãluj m
l
uj

 ·W l + bl

 (19)

where
{
W l

uj , W
l
u,W

l, bl
}L
l=1

are trainable parameters. To
lighten the notations, we unify all of the trainable matrices
(e.g.,

{
W l

uj , W
l
u, W

l
}L
l=1

) as {W l}Ll=1. These parameters are
different but shared across over the nodes, and will be jointly
optimized with Medley automatically.

C. Trust Prediction

With the above attentive trust propagation, the rich infor-
mation of time-varying social interactions is encoded into the
user representations hL. To learn the time-aware trust signals
between any user pair, we first concatenate the representations
of associated users, which refined with L-layer attentive trust
propagation. Then we fit them to a multi-layer perception
followed by a softmax layer. Formally, the trust signal is
formulated as Eq. (20), where Wf is a trainable weight matrix
defined in the multi-layer perception, and σ is the softmax
function.

huv = σ
(
Wf ·

(
hLu ‖ hLv

)
+ bf

)
(20)

Due to its simplicity and expressiveness, we use the con-
catenation operator to obtain the hidden factor of trust signal
between two users. The use of concatenation is guided by
recent works of graph convolutional neural networks [2], [6].
Without loss of generality, the outcome of this step is the
probabilistic prediction of the trust strength. Then we can
compute the trust strength by using h̃uv = argmax

j
(huv). The

detailed forward propagation algorithm of Medley is shown as
procedure Medley.

D. Model Training

Guided by prior work [2], the objective function of Medley
is defined as the cross-entropy loss between the predicted
values and the ground-truth trust strength from the observed
set G(T). Formally, it is formulated as:

L = − 1

|E(T)|
∑

euv∈E(T)

log huv,cuv + λ · ||Θ||22 (21)

where Θ = {{Wl, b
l}Ll=1, Wf , bf} denotes all train-

able model parameters, and λ controls the L2 regulariza-
tion strength to prevent over-fitting. In particular, we adopt
Adam [16] as the optimizer in our implementation, as it has
been shown to be effective in updating the model parame-
ters [6].

V. EXPERIMENTAL RESULTS

A. Description of Datasets Used

Our experiments are conducted on two real-world and
benchmarking datasets — Bitcoin-Alpha4 and Bitcoin-OTC5.
These two datasets are both coming from the sites that focus on
having an open market in which users can make transactions
using Bitcoins. As Bitcoin accounts are anonymous, these

4https://btc-alpha.com/en/
5https://www.bitcoin-otc.com

1: procedure Medley: PREDICTING SOCIAL TRUST (I.E,
FORWARD PROPAGATION)

2: Generate initial states of user representations for G(T)
3: h0

u ← xu, for all u ∈ V(T)
4: . User representations
5: for all u ∈ V(T) do
6: for l = 1 · · ·L do
7: for i = 1 · · ·K do
8: . Attention weights
9: for j ∈ Nu(T) do

10: ml
uj ←

(
h

(l−1)
j ‖ Ψ(tuj)

l−1 ‖ ecuj
)

11: aluj ← ml
uj W

l
uj ·

(
h

(l−1)
u W l

u

)ᵀ
12: ãluj ←

exp (al
uj)∑

j∈Nu(T) exp (al
uj)

13: . Attentive aggregation from local neighborhood
14: h

l(i)
u ← σ

((∑
j∈Nu(T) ã

l
uj m

(l)
uj

)
·W l + bl

)
15: . Multi-head aggregation
16: hlu ←‖K σ

((∑
j∈Nu(T) ã

l
uj m

(l)
uj

)
·W l + bl

)
17:

18: . Trust strength vector
19: for all euv ∈ E(T) do
20: hu ← hLu
21: hv ← hLv
22: huv = σ (Wf · (hu ‖ hv) + bf)

TABLE II
STATISTICAL DESCRIPTION OF BITCOIN-ALPHA AND BITCOIN-OTC

DATASETS.

DATASET # OF # OF TRUST # OF DISTRUST AVE.
NODES EDGES EDGES DEGREE

BITCOIN-ALPHA 3, 775 22, 650 1, 536 12.79

BITCOIN-OTC 5, 881 32, 029 3, 563 12.1

sites adopt the concept of “web-of-trust” to provide safety and
security. Specifically, these sites allow users to positively (or
negatively) rate others they trust (or distrust), for maintaining a
record of users’ reputation to prevent transactions with fraud-
ulent and risky users. Each rating interaction is time-stamped,
which we use to construct the time-varying interaction graph.
We obtain these two datasets from [17], [18]. The statistics of
the datasets are presented in Table II.

Data preparation. We split the time-stamped interactions
chronologically into 70%-15%-15% for training, validation,
and testing according to their timestamps. More precisely,
the 30% of interactions were removed from the interactive
network to compose the validation and test set6. The remaining
70% of interactions compose the observed social interaction
graph. With such split, we ensure that the interactions in the

6PGP and Advogato datasets, used in Guardian [2], are no longer
applicable for evaluations in our context as the collected datasets are a
snapshot of the network and do not contain timestamps.

validation and test set are post-hoc interactions, or “future”
interactions, relative to the observed social graph or training
set.

These social interaction graphs are time-varying, where
users/edges are typically changing over time. To reflect the
time-varying dynamics of these social graphs, we define
the users in the training set as observed users. The new
users appearing during validation or testing period are called
unobserved users. Typically the new users show up during
validation and testing may not have many interactions among
themselves. To contain a certain amount of “future” interac-
tions created by newly added users for validation and testing,
we randomly pick 10% of users for each dataset, mask them
in the training period, and treat them as unobserved users
by only considering their interactions during validation and
testing. This process ensures that the appropriate amount of
future interactions among the unobserved users will show up
during validation and testing.

B. Experimental Settings

Baseline for comparisons. Since few approaches are capable
of managing deep learning on social trust prediction in time-
varying settings, we have no baseline to have a comprehensive
comparison. An alternative option is Guardian [2], the state-of-
the-art method on deep learning-based social trust prediction.
Guardian [2] was proposed to characterize social trust using
the notion of localized graph convolutions [6]. This method
focuses on a particular snapshot of the social interaction graph
and does not consider its time-varying features. Comparing
them is not expected. However, for effectiveness demon-
stration, we use Guardian [2] as our baseline and compare
the prediction performance of Medley with it. For a fair
comparison, we use the same data preparation for Guardian,
splitting the data chronologically for training, validation and
testing, and evaluating the observed users and unobserved
users, respectively. The main difference is that the timestamps
of the interactions are removed from the data, as they do not
utilize the data features. We do not include NeuralWalk [1], as
previous work (Guardian [2]) has shown its superiority over
this method.

As we mentioned in Sec. IV-B, to model the importance
of an interaction between two users, the inner product and
concatenation are alternative attention operators. To see how
different attention operators affect the prediction performance,
we instantiate the attentive trust propagation of Medley with
the inner product and concatenation operator, respectively.
For simplicity, we call them Medley-IP and Medley-CAT
accordingly.

Evaluation metrics. As for the evaluation metrics, we em-
ploy three standard metrics to measure the prediction accuracy,
including the area under the ROC curve (AUC), F-measure,
and the average precision (AP). Specifically, due to the label
imbalance in the datasets, we report F1-micro and F1-weighted
values for the F-measure. Among others, F1-weighted value is
an alternative F-measure metric that accounts for label imbal-
ance. Note that larger values of these metrics indicate better

TABLE III
TESTING ACCURACY ON BITCOIN-ALPHA ON OBSERVED USERS (%)

METHODS AUC F1-MICRO F1-WEIGHTED AP

Medley-IP 92.7 92.9 92.4 98.3

Medley-CAT 90.1 91.6 90.5 97.6

GUARDIAN 66.9 84.6 77.6 91.7

TABLE IV
TESTING ACCURACY ON BITCOIN-ALPHA ON UNOBSERVED USERS (%)

METHODS AUC F1-MICRO F1-WEIGHTED AP

Medley-IP 90.4 91.9 90.9 97.9

Medley-CAT 88.0 91.5 90.1 97.4

GUARDIAN 65.5 86.1 79.7 92.0

prediction accuracy. Unless otherwise stated, all experiments
are run 5 times to ensure statistical significance. Specifically,
we report the average values over 5 runs, as commonly did in
the literature [2].

All our experiments are performed on a machine with Intel
E5-2650 v4 Broadwell 24-core 2.2GHz CPU, NVIDIA P100
Pascal GPU with 12GB HBM2 memory and 800GB SSD.

Parameter settings. We implemented our proposed frame-
work in PyTorch7. Guided by prior work, node2vec [13]
was used to generate the initial embeddings for each user8.
The embedding dimension was fixed to 100 for all datasets.
In terms of hyperparameters, we applied a grid search
for hyperparameters: the learning rate was tuned amongst
{0.0001, 0.001, 0.01}, the attention head was in {1, 2, 3, 4, 5},
the time dimension was in {20, 40, 60, 80, 100, 120}, and the
coefficient of L2 normalization was searched in {10−5, 10−4}.
We used the Xavier initializer [19] and the Adam SGD
optimizer [16] for all models. In addition, the maximum epoch
was set as 50, and early stopping strategy was performed.
Concretely, we terminate the training process if the validation
AUC does not increase for 3 successive epochs. Without
specification, we report the results under the hyperparameters
with the best performance overall — 2 attentive trust prop-
agation layers with 2 attention heads, the time dimension of
100, a dropout ratio of 0.1, the learning rate of 0.0001, and
normalization coefficient of 10−5. For the detailed parameter
settings of Guardian, refer to [2].

C. Performance Comparisons

The dataset Bitcoin-Alpha is used to evaluate the perfor-
mance of different approaches. We report the testing accuracy
on observed users (seen during training period) and unob-
served users (unseen during training period), respectively. The
results are reported in Table III and Table IV. Medley offers the
best AUC with 38.0% improvement on unobserved users as

7https://pytorch.org

TABLE V
TESTING ACCURACY ON BITCOIN-OTC ON OBSERVED USERS (%)

METHODS AUC F1-MICRO F1-WEIGHTED AP

Medley-IP 72.2 86.9 83.7 93.3

Medley-CAT 69.0 86.9 83.8 92.0

GUARDIAN 66.0 85.9 80.4 91.6

TABLE VI
TESTING ACCURACY ON BITCOIN-OTC ON UNOBSERVED USERS (%)

METHODS AUC F1-MICRO F1-WEIGHTED AP

Medley-IP 73.3 86.9 84.3 93.6

Medley-CAT 69.7 87.2 84.3 92.3

GUARDIAN 66.7 86.1 80.7 92.0

compared to Guardian — the state-of-the-art solution — and
even higher improvement on observed users, about 38.6%. The
increases in performance are significant. In terms of F-measure
and AP, both Medley-IP and Medley-CAT achieve substantial
improvement, which implies the powerful learning capability
of our attentive trust propagation mechanisms.

To test that Medley does not rely on datasets, we also eval-
uated our framework on Bitcoin-OTC. As shown in Table V
and Table VI, Medley consistently offers the best AUC by
increasing the accuracy 8.6% for observed users and 9.0%
for unobserved users. The results reported successfully verify
that our proposed attentive trust propagation layers are able to
characterize the latent factors of time-varying interactions to
establish effective social trust.

Guardian is not able to offer comparable performance on
both datasets, which indicates that ignoring the time-varying
dynamics of social interactions may not be sufficient to capture
the complex ties of trust among users. We also observe
that the choice of attention operators is critical. In general,
Medley-IP achieves the best performance on both datasets,
which shows that the attention mechanism instantiated with
the inner product operator effectively captures the time-varying
interactions for social trust prediction. By comparing the
prediction performance on observed users and unobserved
users, e.g., Table III and Table IV, we can conclude that
both Medley and Guardian can be generalized to unseen
nodes/users, indicating that they inherit the inductive property
of graph neural networks.

D. Parameter Analysis

We investigate how the prediction performance varies with
the hyperparameters in our proposed framework. In particular,
we focus on the dimension of the functional time encoding
and the number of attention heads in this analysis. Unless
otherwise stated, the reported results are averaged over 10
runs.

20 40 60 80 100 120
Dimension

0.90

0.92

0.94

0.96

0.98

Pr
ed

ic
tin

 P
er

fo
rm

an
ce

AUC
F1-micro
F1-weighted
AP

(a) Observed Users on
Bitcoin-Alpha

20 40 60 80 100 120
Dimension

0.88

0.90

0.92

0.94

0.96

0.98

Pr
ed

ic
tin

 P
er

fo
rm

an
ce

AUC
F1-micro
F1-weighted
AP

(b) Unobserved Users on
Bitcoin-Alpha

20 40 60 80 100 120
Dimension

0.65

0.70

0.75

0.80

0.85

0.90

Pr
ed

ic
tin

 P
er

fo
rm

an
ce

AUC
F1-micro
F1-weighted
AP

(c) Observed Users on
Bitcoin-OTC

20 40 60 80 100 120
Dimension

0.70

0.75

0.80

0.85

0.90

Pr
ed

ic
tin

 P
er

fo
rm

an
ce

AUC
F1-micro
F1-weighted
AP

(d) Unobserved Users on
Bitcoin-OTC

Fig. 4. Prediction Performance vs. Dimension of Time Encoding.

Medley-IP Medley-CAT
0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

A
U

C

#head=1
#head=2
#head=3
#head=4
#head=5

(a) Observed Users on
Bitcoin-Alpha

Medley-IP Medley-CAT
0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

A
U

C

#head=1
#head=2
#head=3
#head=4
#head=5

(b) Unobserved User on
Bitcoin-Alpha

Medley-IP Medley-CAT
0.60

0.65

0.70

0.75

0.80

A
U

C

#head=1
#head=2
#head=3
#head=4
#head=5

(c) Observed Users on
Bitcoin-OTC

Medley-IP Medley-CAT
0.60

0.65

0.70

0.75

0.80

A
U

C

#head=1
#head=2
#head=3
#head=4
#head=5

(d) Unobserved Users on
Bitcoin-OTC

Fig. 5. AUC Comparisons.

Dimension of time encoding. As stated in Eq. (8), the
continuous-time domain is transformed into a vector space
with dimension dt. To investigate how the time dimension
influences the prediction performance, we vary the time di-
mension from 20 to 120 with a step size of 20. The remaining

model setups are the default settings as reported in V-B
when varying dt. We identify that the performance trend is
similar when the model is instantiated with different attention
operators. Due to the space limitation, we report the results for
the attention mechanism with the inner product operator. We
observe that dt = 100 achieves the best AUC overall. In terms
of F-measure and the average precision, we observe slightly
better prediction accuracy when increasing the dimension of
the time features. It is possible to achieve better performance
by carefully tuning other hyperparameters in different time
dimension settings.

Number of attention heads. Another hyperparameter we
analyze is the number of heads used for multi-head attention.
We analyze the impacts on both attention mechanisms, one
instantiated with the inner product and the other with the
concatenation operator. We set the number of total hidden units
as 100 and other parameters in default settings when varying
the number of heads, for a fair comparison. Specifically, we
vary the number of heads to be 1, 2, 3, 4, 5, respectively. We
report the AUC comparisons of Medley-IP and Medley-CAT,
as shown in Fig. 5. We observe that Medley benefits from the
multi-head mechanisms in general. More specifically, Medley-
CAT achieves higher accuracy with 3 heads on Bitcoin-
Alpha and 2 heads on Bitcoin-OTC, respectively. Medley-
IP, equipped with a 2-head attention with the inner product
operator, gives the best performance overall.

VI. RELATED WORK

This section discusses two research lines relevant to our
work: social trust evaluation and recent progress of graph
neural network-based learning developed for graph-structured
data.

A. Social Trust Evaluation

Social interactions among users are time-dependent, which
leads to the dynamic evolution of trust in online social
networks. Most of the existing works focus on the static social
graph and do not explicitly capture the evolving nature of
the online social networks. These models can be categorized
into three categories: walk-based models, matrix factorization-
based models, and deep learning models.
Walk-based models: ModelTrust [20] and TidalTrust [21]
compute trust by searching the paths throughout the network.
Multiple paths between users are aggregated to be the esti-
mates of trust. AssessTrust [22] and OpinionWalk [23] model
the value of trust using statistical distributions in three-valued
subjective logic.
Matrix factorization-based models: Zheng et al.’s work [3]
and Matri [4] are designed based on matrix factorization.
User-user trust ties are analogous to user-item pairs in a
recommender system. Matri [4] is designed to combine trust
tendency and trust propagation under a collective matrix
factorization framework, while Zheng et al.’s work further
considers the similarity of users’ trust rating habits.
Deep learning models: NeuralWalk [1] is designed to capture
the trust propagation and aggregation rules using machine

learning techniques. The core of this model is WalkNet, a
neural network architecture designed to model single-hop trust
propagation and aggregation. Guardian [2] is proposed to
characterize social trust using the notion of localized graph
convolutions [6].

To capture the evolving nature of the online social networks,
PowerTrust [24] proposes to perform trust computation period-
ically to ensure that the computed trust values are up-to-date.
PeerTrust [25] allows users to choose the temporal window
for dynamic aging of old interactions/experiences as per their
needs.

B. Graph Neural Networks

Graph Neural Networks (GNNs) have shown their effec-
tiveness and obtained state-of-the-art performance on different
graph tasks [8], [15], [26], [27], such as node classification,
link prediction, and graph classification. There are several
variants of GNNs, such as graph convolutional networks [15],
graph attention networks [8], and graph isomorphism net-
works [28]; all share a similar feature learning strategy. For
each node, GNNs refine its node features by aggregating
the features from its neighbors and combining them with
its own features. These GCN-based approaches consistently
outperform techniques based upon matrix factorization or
random walks (e.g, node2vec [13], Line [29], and Deep-
Walk [14]). Their success has led to a surge of interest in
applying the architecture of GNNs to applications ranging
from recommendation systems [30], drug design [31], to social
trust prediction [2], [5].

The analysis of time-dependent social interaction is essential
for understanding trust in time-varying online social networks.
However, none of the existing work investigates time-aware
trust prediction automatically. In this work, we argue that
incorporating timing information can provide more compelling
insights into how social trust is established. Therefore, we ex-
pect to deliver effect trust prediction based on past interactions
in a time-varying online social network.

VII. CONCLUSION

We introduced a new framework, called Medley, to exploit
time-dependent social interactions for trust prediction on time-
varying online social networks. In this framework, we explic-
itly model users’ time-varying latent factors to discover hidden
and predictive time-aware trust signals in online social net-
works. By applying the functional time encoding, we represent
the social interactions and the timing information into a latent
space. The core of Medley is the attentive-trust propagation
network, which is equipped with attention mechanisms to
capture various importance weights for interactions that evolve
over time. Extensive experiments on two real-world datasets
have demonstrated the rationality and effectiveness of our
proposed Medley. By incorporating topological structures that
evolve over time, our framework can infer pairwise social trust
based on past social interactions.

REFERENCES

[1] G. Liu, C. Li, and Q. Yang, “NeuralWalk: Trust Assessment in Online
Social Networks with Neural Networks,” in Proc. INFOCOM. IEEE,
2019.

[2] W. Lin, Z. Gao, and B. Li, “Guardian: Evaluating Trust in Online Social
Networks with Graph Convolutional Networks,” in Proc. INFOCOM.
IEEE, 2020.

[3] X. Zheng, Y. Wang, M. A. Orgun, Y. Zhong, and G. Liu, “Trust Pre-
diction with Propagation and Similarity Regularization,” in Proc. AAAI,
2014.

[4] Y. Yao, H. Tong, X. Yan, F. Xu, and J. Lu, “Matri: A Multi-Aspect and
Transitive Trust Inference Model,” in Proc. WWW. ACM, 2013.

[5] W. Lin, “Social Media Analytics with Graph Convolutional Networks,”
Ph.D. Dissertation, University of Toronto, 2020.

[6] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive Representation
Learning on Large Graphs,” in Proc. the Neural Information Processing
Systems (NeurIPS), 2017.

[7] D. Xu, C. Ruan, E. Korpeoglu, S. Kumar, and K. Achan, “Self-Attention
with Functional Time Representation Learning,” in Proc. the Neural
Information Processing Systems (NeurIPS), 2019.

[8] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, and Y. Ben-
gio, “Graph Attention Networks,” in Proc. International Conference on
Learning Representations (ICLR), 2018.

[9] L. H. Loomis, Introduction to Abstract Harmonic Analysis. Courier
Corporation, 2013.

[10] A. Rahimi and B. Recht, “Random Features for Large-Scale Kernel Ma-
chines,” in Proc. the Neural Information Processing Systems (NeurIPS),
2008.

[11] M. McPherson, L. Smith-Lovin, and J. M. Cook, “Birds of A Feather:
Homophily in Social Networks,” Annual Review of Sociology, vol. 27,
no. 1, pp. 415–444, 2001.

[12] P. V. Marsden and N. E. Friedkin, “Network Studies of Social Influence,”
Sociological Methods & Research, vol. 22, no. 1, pp. 127–151, 1993.

[13] A. Grover and J. Leskovec, “node2vec: Scalable Feature Learning for
Networks,” in Proc. SIGKDD. ACM, 2016.

[14] B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online Learning of
Social Representations,” in Proc. SIGKDD. ACM, 2014.

[15] T. N. Kipf and M. Welling, “Semi-Supervised Classification with Graph
Convolutional Networks,” in Proc. International Conference on Machine
Learning (ICML), 2017.

[16] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
in Proc. International Conference for Learning Representations (ICLR),
2015.

[25] L. Xiong and L. Liu, “PeerTrust: Supporting Reputation-Based Trust for
Peer-to-Peer Electronic Communities,” IEEE Transactions on Knowl-
edge and Data Engineering (TKDE), vol. 16, no. 7, pp. 843–857, 2004.

[17] S. Kumar, F. Spezzano, V. Subrahmanian, and C. Faloutsos, “Edge
Weight Prediction in Weighted Signed Networks,” in Proc. International
Conference on Data Mining (ICDM). IEEE, 2016.

[18] S. Kumar, B. Hooi, D. Makhija, M. Kumar, C. Faloutsos, and V. Sub-
rahmanian, “Rev2: Fraudulent User Prediction in Rating Platforms,”
in Proc. International Conference on Web Search and Data Mining
(WSDM). ACM, 2018.

[19] X. Glorot and Y. Bengio, “Understanding the Difficulty of Training Deep
Feedforward Neural Networks,” in Proc. International Conference on
Artificial Intelligence and Statistics, 2010.

[20] P. Massa and P. Avesani, “Controversial Users Demand Local Trust
Metrics: An Experimental Study on epinions.com Community,” in
Proc. AAAI, 2005.

[21] J. Golbeck, J. Hendler et al., “FilmTrust: Movie Recommendations using
Trust in Web-Based Social Networks,” in Proc. International Conference
on Consumer Communications and Networking. IEEE, 2006.

[22] G. Liu, Q. Yang, H. Wang, X. Lin, and M. P. Wittie, “Assessment
of Multi-Hop Interpersonal Trust in Social Networks by Three-Valued
Subjective Logic,” in Proc. INFOCOM. IEEE, 2014.

[23] G. Liu, Q. Chen, Q. Yang, B. Zhu, H. Wang, and W. Wang, “Opin-
ionWalk: An Efficient Solution to Massive Trust Assessment in Online
Social Networks,” in Proc. INFOCOM. IEEE, 2017.

[24] R. Zhou and K. Hwang, “PowerTrust: A Robust and Scalable Reputation
System for Trusted Peer-to-Peer Computing,” IEEE Transactions on
Parallel and Distributed Systems (TPDS), vol. 18, no. 4, pp. 460–473,
2007.

[26] M. Zhang and Y. Chen, “Link Prediction Based on Graph Neural Net-
works,” in Proc. the Neural Information Processing Systems (NeurIPS),
2018.

[27] W. Lin, Z. Gao, and B. Li, “Shoestring: Graph-Based Semi-Supervised
Classification With Severely Limited Labeled Data,” in Proc. IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020, pp.
4174–4182.

[28] K. Xu, W. Hu, J. Leskovec, and S. Jegelka, “How Powerful are Graph
Neural Networks?” in Proc. International Conference on Learning
Representations (ICLR), 2018.

[29] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-
Scale Information Network Embedding,” in Proc. WWW. ACM, 2015.

[30] R. Ying, R. He, K. Chen, P. Eksombatchai, W. L. Hamilton, and
J. Leskovec, “Graph Convolutional Neural Networks for Web-Scale
Recommender Systems,” in Proc. SIGKDD. ACM, 2018.

[31] M. Zitnik, M. Agrawal, and J. Leskovec, “Modeling Polypharmacy Side
Effects with Graph Convolutional Networks,” Bioinformatics, vol. 34,
no. 13, pp. i457–i466, 2018.

