
Generative Causal Explanations for Graph Neural Networks

Wanyu Lin 1 2 Hao Lan 2 Baochun Li 2

Abstract
This paper presents Gem, a model-agnostic ap-
proach for providing interpretable explanations
for any GNNs on various graph learning tasks.
Specifically, we formulate the problem of provid-
ing explanations for the decisions of GNNs as
a causal learning task. Then we train a causal
explanation model equipped with a loss function
based on Granger causality. Different from exist-
ing explainers for GNNs, Gem explains GNNs on
graph-structured data from a causal perspective.
It has better generalization ability as it has no re-
quirements on the internal structure of the GNNs
or prior knowledge on the graph learning tasks.
In addition, Gem, once trained, can be used to ex-
plain the target GNN very quickly. Our theoretical
analysis shows that several recent explainers fall
into a unified framework of additive feature attri-
bution methods. Experimental results on synthetic
and real-world datasets show that Gem achieves
a relative increase of the explanation accuracy by
up to 30% and speeds up the explanation process
by up to 110× as compared to its state-of-the-art
alternatives.

1. Introduction
Many problems in scientific domains, ranging from social
networks (Lin et al., 2020) to biology (Zitnik et al., 2018)
and chemistry (Zitnik & Leskovec, 2017), can be naturally
modeled as problems of property learning on graphs. For ex-
ample, in biology, identifying the functionality of proteins is
critical to find the proteins associated with a disease, where
proteins are represented by local protein-protein interaction
(PPI) graphs. Supervised learning of graphs, especially with
graph neural networks (GNNs), has had a significant im-
pact on these domains, mainly owing to their efficiency and
capability of inductive learning (Hamilton et al., 2017).
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Despite their practical success, most GNNs are deployed as
black boxes, lacking explicit declarative knowledge repre-
sentations. Therefore, they have difficulty in generating the
required underlying explanatory structure. The deficiency of
explanations for the decisions of GNNs significantly hinders
the applicability of these models in decision-critical settings,
where both predictive performance and interpretability are
of paramount importance. For example, medical decisions
are increasingly being assisted by complex predictions that
should lend themselves to be verified by human experts
easily. Model explanations allow us to argue for model de-
cisions and exhibit the situation when algorithmic decisions
might be biased or discriminating. In addition, precise expla-
nations may facilitate model debugging and error analysis,
which may help decide which model would better describe
the data’s underlying semantics.

While explaining graph neural networks on graphs is
still a nascent research topic, a few recent works have
emerged (Luo et al., 2020; Vu & Thai, 2020; Ying et al.,
2019; Yuan et al., 2020), each with its own perspective on
this topic. In particular, XGNN (Yuan et al., 2020) was
proposed to investigate graph patterns that lead to a specific
class, while GNNExplainer (Ying et al., 2019) provided the
local explanation for a single instance (a node/link/graph),
by determining a compact subgraph leading to its prediction.
PGM-Explainer (Vu & Thai, 2020) explored the dependen-
cies of explained features in the form of conditional prob-
ability, which is naturally designed for explaining a single
instance.

However, verifying if a target GNN works as expected often
requires a considerable amount of explanations for provid-
ing a global view of explanations. For this end, PGEx-
plainer (Luo et al., 2020) learns a multilayer perceptron
(MLP) to explain multiple instances collectively. However,
PGExplainer heavily relies on node embeddings from the
target GNN, which may not be obtained without knowing
its internal model structure and parameters. Besides, PG-
Explainer can not explain any graph tasks without explicit
motifs. Taking MUTAG as an example, PGExplainer as-
sumes that NH2 and NO2 are the motifs for the mutagen
graphs and filters out the instances without these two motifs.
We verified that the assumption might not be reasonable by
looking at the dataset statistics (provided in Appendix B).
More specifically, PGExplainer fails to explain the instances
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without explicit motifs under their assumptions. Motivated
by this observation, we aim to provide fast and accurate
explanations for any GNN-based models without the limita-
tions above.

In this work, we propose a new methodology, called Gem,
to provide interpretable explanations for any GNNs on the
graph using causal explanation models. To the best of our
knowledge, while the notion of causality has been used for
interpretable machine learning on images or texts, this is
the first effort from a causal perspective to explain graph
neural networks. Specifically, our causal objective is built
upon the notion of Granger causality, which comes from the
pioneering work of Wiener and Granger (Bressler & Seth,
2011; Granger, 1969; Wiener, 1956). Granger causality
declares a causal relationship xi → Y between variables xi
and Y if we are better able to predict Y using all available
information than if the information apart from xi had been
used. In the graph domain, if the absence of an edge/node
xi decreases the ability to predict Y , then there is a causal
relationship between this edge/node and its corresponding
prediction. Based on the insights from neuroscience (Biswal
et al., 1997), we extend the notion of Granger causality
to characterize the explanation of an instance by its local
subgraphs.

We note that the concept of Granger causality is probabilis-
tic, and the graph data is inherently interdependent, i.e.,
edges or nodes are correlated variables. Directly applying
Granger causality may lead to incorrectly detected causal
relations. In addition, we envision that the resulting expla-
nations should be human-intelligible and valid. For exam-
ple, in some applications such as chemistry, an explanation
for the mutagen graph is a functional group and should be
connected. Accordingly, we propose an approximate com-
putation strategy that makes our method viable for graph
data with interdependency, under reasonable assumptions
on the causal objective.

In particular, we incorporate various graph rules, such as the
connectivity check, to encourage the obtained explanations
to be valid and human-intelligible. Then we train causal
explanation models that learn to distill compact subgraphs,
causing the outputs of the target GNNs. This approach is
flexible and general since it has no requirements on the target
model to be explained (commonly referred to as “model-
agnostic”), or no assumptions on the learning tasks (explicit
motifs for identifying a particular class), and can provide
local and global views of the explanations. In particular, it
does not require retraining or adapting to the original model.
In other words, once trained, Gem can be used to explain
the target GNN models with little time.

Highlights of our original contributions are as follows. We
propose a new methodology to explain graph neural net-
works on the graph from the causal perspective; to the best

of our knowledge, such an approach has not been used for
interpreting GNNs on the graph so far. We introduce causal
objectives for better estimates of the causal effect in our
methodology and provide an approximate computation strat-
egy to deal with graph data with interdependency. Various
graph rules are incorporated to ensure that the obtained ex-
planations are valid. We then use a causal objective to train
a graph generative model as the explainer, which can au-
tomatically explain the target GNNs with little time. We
theoretically analyze that several recent methods, including
Gem, all fall into the framework of additive feature attribu-
tion methods, which essentially solve the same optimization
problem with different approximation methods (provided
in Appendix A). We empirically demonstrate that Gem is
significantly faster and more accurate than alternative meth-
ods.

2. Problem Setup

A set of graphs can be represented as G = {Gi}Ni=1, where
|G| = N . Each graph is denoted as Gi = (Vi, Ei), where
Ei denotes the edge set and Vi =

{
vi1, v

i
2, · · · , vi|Vi|

}
is the node set of graph i. In many applications, nodes
are associated with d-dimensional node features Xi ={
xi1, x

i
2, · · · , xi|Vi|

}
, xij ∈ Rd. Without loss of gener-

ality, we consider the problem of explaining a graph neural
network-based classification task. This task can be node
classification or graph classification. For graph classifica-
tion, we associate each graph Gi with a label, yi, where
yi ∈ Y = {c1, c2, · · · , cl}, and l is the number of cate-
gories. The dataset D = {(Gi, yi)}Ni=1 is represented by
pairs of graph instances and graph labels. Examples of such
task include classifying the drug molecule graphs according
to their functionality.

In the node classification setting, each node vj ∈ V of
a graph G is associated with a corresponding node label
yj ∈ Y . Examples of this kind include classifying papers
in a citation network, or entities in a social network such
as Reddit. The dataset D = {(vj , yj)}|V |

j=1 is represented
by pairs of nodes and node labels. In general, we use Ii
to represent an instance, which is equivalent to vi for node
classification or Gi for graph classification.

GNN family models. Graph neural networks (GNNs) are a
family of graph message passing architectures that incorpo-
rate graph structure and node features to learn a dense rep-
resentation of a node or the entire graph. In essence, GNNs
follow a neighborhood aggregation strategy, where the node
representations are updated via iteratively aggregating the
representations from its neighbors in the graph. Graph
convolutional networks (GCNs) use mean pooling (Kipf &
Welling, 2017) for aggregation, while GraphSage aggregates
the node features via mean/max/LSTM pooling (Hamilton
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Figure 1. An illustration of the computation graph (best viewed in
color). Node i is the target node to be explained.

et al., 2017). Taking GCNs as an example, the basic oper-
ator for the neighborhood information aggregation is the
element-wise mean. After L iterations of aggregation, a
node’s representation can capture the structural information
within its L-hop graph neighborhood.

Formally, a graph neural network (GNN) can be written as a
function f (·) : G → Y or f (·) : V → Y . The former is a
graph-level classifier, and the latter is a node-level classifier.
Typically, a GNN f (·) is trained with an objective function
L : y × ỹ → s that computes a scalar loss s ∈ R after
comparing the model’s predictive output ỹ to a ground-truth
output y. The categorical cross-entropy for classification
models is commonly used for such objectives.

Objective. We are given a pre-trained classification model,
represented by f (·), and our ultimate goal is to obtain an
explanation model, denoted as f (·)

exp
, that can provide fast

and accurate explanations for the pre-trained model, which
can also be called a target GNN. Intrinsically, an explanation
is a subgraph that is the most relevant for a prediction —
the outcome of the target GNN, denotes as ỹ. Consistent
with previous studies in the literature (Yuan et al., 2020),
we focus on explanations on graph structures. In particular,
we specifically do not require access to, or knowledge of,
the process by which the classification model produces its
output, nor do we require the classification model to be
differentiable or any specific form. We allow the explainers
to retrieve different predictions by performing queries on
f (·).

3. Methodology
In essence, the core of the GNNs is a neighborhood-based
aggregation process, where a prediction of an instance is
fully determined by its computation graph. Let us use
Gc

i = (V c
i , A

c
i , X

c
i ) to represent the computation graph

of an instance i, where V c
i is the node set, Ac

i ∈ {0, 1}
indicates the adjacency matrix, and Xc

i is the feature ma-
trix of the computation graph. Typically, a GNN learns a
conditional distribution denoted as P (Y |Gc

i ), where Y is
a random variable representing the class labels. For clarity,
let us see an example graph, shown in Figure 1, which will
also be used throughout this paper. In this example, a target
GNN is trained for node classification, and the node i is the

target node to be explained. Oftentimes, the computation
graph of node i is a L-hop subgraph; an exmaple of L = 2
is highlighted in Figure 1.

Therefore, the setting we focus on can be reformulated as
the following: we are given a GNN-based classification
model that processes the computation graph of an instance
(a node or a graph), denoted as Gc, and generates the cor-
responding outputs p (Y |Gc) for predicting ỹ. Unlike the
node classification task, when the target GNN is trained for
graph classification, the computation graph of an instance
will be the entire graph. Accordingly, this work seeks to
generate an explanation, a subgraph of Gc that is most rel-
evant for predicting ỹ, efficiently and automatically. We
use Gs to denote the generated explanation. Our setting is
general and works for any graph learning tasks, including
node classification and graph classification. Our ultimate
goal is to encourage a compact subgraph of the computation
graph to have a large causal influence on the outcome of the
target GNN.

Differences from PGExplainer. PGExplainer is the most
closely related work to our study, as both PGExplainer
and Gem adopt parameterized networks to provide local
and global views for model explanations. However, PGEx-
plainer relies on node embeddings from the target GNN to
learn a multilayer perceptron, which may not be obtained
without knowing its internal model structure. In contrast,
to explain an instance (a node or a graph), Gem simply in-
puts the original computation graph into the explainer and
outputs a compact explanation graph. In other words, Gem
does not require any prior knowledge of the internal model
structure (the target GNN) and parameters, or any prior
knowledge of the motifs associated with the graph learning
tasks. Therefore, it exhibits better generalization abilities.
In what follows, we will present Gem, our model-agnostic
approach for providing interpretable explanations for any
GNNs on a variety of graph learning tasks. The design
of Gem is based upon principles of causality, in particular
Granger causality (Granger, 1969).

Granger causality (Granger, 1969; 1980). In general,
Granger causality describes the relationships between two
(or more) variables when one is causing the other. Specif-
ically, if we are better able to predict variable ỹ using all
available information U than if the information apart from
variable xi had been used, we say that xi Granger-causes
ỹ (Granger, 1980), denoted by xi → ỹ1.

The crux of our approach is to train an explanation model,
or an explainer, to explain the target graph neural network.
Specifically, Gem is trained with the guidance built on
the first principles of Granger causality. Here we extend

1We are aware of the drawbacks of reusing notations. xi and
ỹ in this definition represent any random variables for simplicity.
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Figure 2. Illustration of Gem. 1) The distillation process of generating the ground-truth explanations based on the first principles of
Granger causality; 2) Training the explainer that can be used to generate explanations for the target GNNs.

Granger causality to the case where a compact subgraph Gs

of the computation graph is considered the main cause of
the corresponding prediction ỹ. This is inspired by a long-
held belief in neuroscience that the structural connectivity
local to a certain area somehow dictates the function of that
piece (Biswal et al., 1997). Due to the inherent property
of GNNs, the computation graph contains all the relevant
information that causes the prediction of the target GNN.
Under the assumption that Granger causality was built upon,
we can squeeze the cause of the prediction, Gs, from the
computation graph. Therefore, we can use the given defini-
tion to quantify the degree to which part of the computation
graph causes the prediction of the target GNN. In principle,
the notion of Granger causality would hold if p (ỹ |Gc) =
p (ỹ |Gs) holds.

3.1. Causal Objective

Given a pre-trained/target GNN and an instance Gc, we use
δGc to denote the model error of the target GNN when con-
sidering the computation graph, while δGc\{ej} represents
the model error excluding the information from the edge ej ,
where ej ∈ Gc. With these two definitions and following
the notion of Granger causality, we can quantify the causal
contribution of an edge ej to the output of the target GNN.
More specifically, the causal contribution of the edge ej is
defined as the decrease in model error, formulated as Eq. (1):

∆δ, ej = δGc\{ej} − δGc (1)

To calculate δGc and δGc\{ej}, we first compute the outputs
corresponding to the computation graph Gc and the one
excluding edge ej , Gc \ {ej}, based on the pre-trained
GNN. For simplicity, the pre-trained GNN is denoted as
f (·). Then, the associated outputs can be formulated as
Eq. (2) and Eq. (3) respectively:

ỹGc = f (Gc) (2)

ỹGc\{ej} = f (Gc \ {ej}) (3)

Then we compare the outputs of the target GNN, e.g., ỹGc
and ỹGc\{ej}, with the ground-truth label y, respectively. In
particular, we use the loss function of the pre-trained GNN
as the metric to measure the model error, denoted as L. The
mathematical formulations are shown as Eq. (4) and Eq. (5):

δGc = L (y, ỹGc) (4)

δGc\{ej} = L
(
y, ỹGc\{ej}

)
(5)

Now, the causal contribution of an edge ej can be measured
by the loss difference associated with the computation graph
and the one deleting edge ej .

Recall that we are seeking a “guidance” that can be used to
train our explainer, encouraging its outcome to be effective
explanations. Intrinsically, ∆δ, ej can be viewed as capturing
the individual causal effect (ICE) (Goldstein et al., 2015) of
the input Gc with values ej on the output ỹ. Therefore, it
is straightforward to obtain the most relevant subgraph for
predicting ỹ based on ∆δ, ej , which we call the ground-truth
distillation process.

Ideally, given the edges’ causal contributions in a computa-
tion graph, we can sort the edges accordingly and distill the
top-K most relevant edges as a prediction explanation. How-
ever, due to the special representations of the graph data,
the casual contributions from the edges are not independent,
e.g., a 1-hop neighbor of a node can also be a 2-hop neigh-
bor of the same node due to cycles. To this end, we further
incorporate various graph rules to encourage the distillation
process to be more effective. We believe that data charac-
teristics are the most crucial factor in deciding which graph
rules to use. It is necessary to understand the principle of the
learning task, and the limitation of a human-intelligible ex-
planation might be to prevent spurious explanations. In the
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application of bioinformatics, such as the MUTAG dataset,
the explanation is a functional group, and therefore, the
distilled top-K edges should be connected. Nevertheless, in
graph representation-based Digital Pathology, such as the
cell-graphs towards cancer subtyping, the explanation often
contains subsets of cells and cellular interactions (Jaume
et al., 2020). In this particular scenario, the connectivity
constraint is unnecessary. The detailed distillation process
is presented in Appendix C.

Using the distilled ground truth, denoted as G̃s =(
Ṽ s, Ãs, X̃s

)
, we can train supervised learning models

to learn to explain any other GNN models based solely on
its outputs, and without the need to retrain the model to
be explained. The workflow of Gem is illustrated in Fig-
ure 2. Note that generating an explanation based on the
explainer is not necessary in situations where ground-truth
labels of the instances are readily available. In those cases,
pre-calculated ∆δ, ej and our distillation process can directly
be used to explain the pre-trained GNN.

3.2. Graph Generative Model as an Explainer

In principle, any graph generative models that can be trained
to output graph-structured data can be used as a causal ex-
planation model. Due to their simplicity and expressiveness,
we focus on auto-encoder architectures utilizing graph con-
volutions (Kipf & Welling, 2016; Li et al., 2018a;b). In
particular, we use a model consisting of a graph convolu-
tional network encoder and an inner product decoder (Kipf
& Welling, 2016). We leave the exploration of other genera-
tive models for future work.

More concretely, in our explainer, we first apply several
graph convolutional layers to aggregate neighborhood in-
formation and learn node features. Then we use the inner
product decoder to generate an adjacency matrix Âc as an
explanation mask. With this mask, we are able to construct
a corresponding explanation, a compact subgraph that only
contains the most relevant portion of a computation graph
to its prediction. In particular, each value in Âc denotes the
contribution of a specific edge to the prediction of Gc, if
that edge exists in the target instance. Formally, the recon-
struction process can be formulated as:

Z = GCNs (Ac, Xc) (6)

Âc = σ
(
ZZT

)
(7)

where Ac is the adjacency matrix of the computation graph
for the target instance, Xc denotes the node features, and Z
is the learned node features.

Explanation for node classification. The output of an
explanation for a target node is a compact subgraph of the
computation graph that is most influential for the prediction
label. To answer the question of “How did a GNN predict
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Figure 3. An illustration of the node labeling for node explanation
generation (best view in color). The node i is the target node to
be explained and the graph in the left-hand side is i’s computation
graph. i is labeled as 0, while j and k are labeled as 1 as they are
one-hop away from i.

that a given node has label ỹ ?”, the explainer should capture
which node to explain. Specifically, we use a node labeling
technique to mark nodes’ different roles in a computation
graph. The generated node labels are then transformed into
vectors (e.g., one-hot encodings) and treated as the nodes’
feature vector — Xc. Note that the labels here represent the
structural information of nodes within a computation graph,
which are different from the classification/prediction labels.
The intuition underlying this node labeling technique is that
nodes with different relative positions to the target node may
have different structural importance to its prediction label
ỹ. By incorporating the relative role features, Gem would
capture which node to explain in a computation graph.

Specifically, our node labeling method is derived based on
two principles: 1) The target node, denoted as i, always
has the distinctive label “0.” 2) A node relative position
within a computation graph can be described by its radius
regarding the center/target node, i.e., d(i, j) and d(i, k). For
two nodes, if d(i, j) = d(i, k), then they have the same
label. To further elucidate the used node labeling method,
let us see an example shown in Figure 3. Node i is the target
node, while both j and k are the one-hop neighbors of i.
With our node labeling mechanism, node i is labeled as 0,
while j and k are labeled as 1 as they are one-hop away
from i.

Training the explainer. We envision that the reconstructed
matrix Âc is the weighted adjacency matrix that reflects
the contributions of the edges to its prediction. Now we
can apply the “guidance” distilled based on the notion of
Granger causality, described in Sec. 3.1, to supervise the
learning process. In particular, we use the root mean square
error between the reconstructed weighted matrices and the
true causal contributions distilled based on our proposed
distillation process in Sec. 3.1.

One highlight of our explainer is its flexibility to choose the
predictive model, which is commonly referred to as “model-
agnosticism” (Ribeiro et al., 2016). Guided by the first
principles of Granger causality, our explainer enables graph
generative models to learn to generate compact subgraphs
for model explanations. We do not need to retrain or adapt
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the predictive model to explain its decisions. Once trained,
it can be used to construct explanations using the generative
mapping for the target GNN with little time.

Computational complexity analysis. One may concern
that it would be time-consuming to run through the training
instances for obtaining the training “guidance.” We argue
that our method amortizes the estimation cost by training
a graph generator to generate explanations for any given
instances. In particular, Gem adopts a parameterized graph
auto-encoder with GCN layers to generate explanations,
which, once trained, can be utilized in the inductive setting
to explain new instances. Specifically, the model parameter
complexity of Gem is independent of the input graph size
as it naturally inherits the advantages of GCNs (empirically
verified in Appendix B). With the inductive property, the
inference time complexity of Gem is O (|E|), where |E| is
the number of edges of the instance to be explained. Sec. 4
empirically verified the computation efficiency of Gem. In
a nutshell, our solution transforms the task of producing
explanations for a given GNN into a supervised learning
task, trained based on the first principles of Granger causal-
ity. Then we can address the explanation task with existing
supervised graph generative models.

Extensions to other learning tasks on graphs. Beyond
node classification, our explainer can also provide expla-
nations for link prediction and graph classification tasks
without modifying its optimization algorithm. The key dif-
ference is the node labeling technique for marking the nodes’
roles in the computation graph. For example, to generate an
explanation for the link prediction task, the explainer model
should be able to identify which link to explain. An alterna-
tive approach is double-radius node labeling, marking the
target link (connecting two target nodes) within the com-
putation graph, proposed by Zhang et al. (Zhang & Chen,
2018). More concretely, node i’s position is determined by
its radius with respect to the two target nodes (x, y), i.e.,
(d(i, x), d(i, y)).

Note that, due to properties of the graph structure invariant,
there is no need to mark a particular node/link for graph
classification tasks. Instead, we use a graph labeling method,
called the Weisfeiler-Lehman (WL) algorithm (Weisfeiler
& Lehman, 1968), to capture the structural roles of nodes
within a computation graph, which has been widely used
in graph isomorphism checking. For more details about the
WL algorithm, We refer curious readers to (Weisfeiler &
Lehman, 1968). In Sec. 4, we will empirically show that
with the “guidance” based on Granger causality, comple-
mented by node features from graph/node labeling, Gem
can provide fast and accurate explanations for any graph
learning tasks.

4. Experimental Studies

4.1. Datasets and Experimental Settings

Node classification with synthetic datasets. In the
node classification setting, we built two synthetic datasets
where ground truth explanations are available. In partic-
ular, we followed the data processing as reported in GN-
NExplainer (Ying et al., 2019). The first dataset is BA-
shapes, where nodes are labeled based on their structural
roles within a house-structured motif, including “top-node,”
“middle-node,” “bottom-node,” and “none-node” (the ones
not belonging to a house). The second dataset is Tree-cycles,
in which nodes are labeled to indicate whether they belong
to a cycle, including “cycle-node” and “none-node” (more
details of the datasets are provided in Appendix B).

Graph classification with real-world datasets. For graph
classification, we use two benchmark datasets from bioin-
formatics — Mutag (Debnath et al., 1991) and NCI1 (Wale
et al., 2008). Mutag contains 4337 molecule graphs, where
nodes represent atoms, and edges denote chemical bonds.
The graph classes, including the non-mutagenic or the mu-
tagenic class, indicate their mutagenic effects on the Gram-
negative bacterium Salmonella typhimurium. NCI1 consists
of 4110 instances, each of which is a chemical compound
screened for activity against non-small cell lung cancer or
ovarian cancer cell lines.

Baselines. We consider the state-of-the-art baselines that be-
long to the unified framework of additive feature attribution
methods (The proof is provided in Appendix A) (Lundberg
& Lee, 2017): GNNExplainer (Ying et al., 2019) and PG-
Explainer (Luo et al., 2020)2. GNNExplainer explains for a
given instance at a time, while PGExplainer explains multi-
ple instances collectively. Unless otherwise stated, all the
hyperparameters of the baselines are the same in the source
code. We do not include gradient-based method (Ying et al.,
2019), graph attention method (Veličković et al., 2018), and
Gradient (Pope et al., 2019), since previous explainers (Luo
et al., 2020; Ying et al., 2019) have shown their superiority
over these methods.

Parameter settings of Gem3. For all datasets on different
tasks, associate explainers share the same structure (Kipf
& Welling, 2016). Specifically, we first apply an inference
model parameterized by a three-layer GCN with output di-
mensions 32, 32, and 16. Then the generative model is given
by an inner product decoder between latent variables. The
explainer models are trained with a learning rate of 0.01.
We use hyperparameter K to control the size of the explana-
tion subgraph and compare the performance of Gem with
GNNExplainer and PGExplainer. The target GNN model
accuracy on four datasets, more implementation details, and

2We use the source code released by the authors.
3The source code can be found in https://github.com/wanyu-

lin/ICML2021-Gem.
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Table 1. Explanation Accuracy on Synthetic Datasets (%).

BA-SHAPES TREE-CYCLES
K 5 6 7 8 9 6 7 8 9 10
Gem 93.4 97.1 97.1 97.1 99.3 86.1 87.5 92.5 93.9 95.4
GNNExplainer 82.4 88.2 91.2 91.2 94.1 14.3 46.8 74.6 91.4 96.1
PGExplainer 71.9 90.7 92.0 93.3 94.1 94.4 80.6 77.0 82.4 89.4

Table 2. Explanation Accuracy on Real-World Datasets (%).

MUTAG NCI1
K 15 20 25 30 15 20 25 30
Gem-0 64.0 78.1 81.0 85.0 − − − −
GNNExplainer-0 60.0 67.6 68.9 75.8 − − − −
PGExplainer-0 22.5 38.5 57.6 72.3 − − − −
Gem 66.3 78.0 82.1 83.4 56.9 65.3 68.9 72.8
GNNExplainer 67.1 74.9 75.8 80.9 59.3 61.8 69.6 72.0

experimental results are presented in the Appendix B.

Evaluation metrics. An essential criterion for explanations
is that they must be human interpretable, which implies
that the generated explanations should be easy to under-
stand. Taking BA-shapes as an example, the node label is
determined by its position within a house-structured motif.
The explanations for this dataset should be able to highlight
the house structure. For interpretability, we use the visu-
alized explanations of different methods to analyze their
performance qualitatively.

In addition, explanations seek to answer the question: when
a GNN makes a prediction, which parts of the input graph
are relevant? Ideally, the generated explanation/subgraph
should lead to the same prediction outcome by the pre-
trained GNN (e.g. p (ỹ |Gs) should be close to p (ỹ |Gc)).
In other words, a better explainer should be able to gener-
ate more compact subgraphs yet maintains the prediction
accuracy while the associated explanations are fed into the
pre-trained GNN. To this end, we generate the explanations
for the test set based on Gem, GNNExplainer and PGEx-
plainer, respectively. Then we use the predictions of the
pre-trained GNN for the explanations to calculate the expla-
nation accuracy.

The rationality of K selection is from the size of the ground-
truth structure for the synthetic datasets. We do not have
the ground-truth motif for the real-world datasets, therefore
we select K according to the distribution of the graph size
for each dataset, respectively (reported in the Appendix
B). Note that a K that is too small may incur meaningless
explanations; for example, the aromatic group is an essential
component leading to the mutagenic effect. We evaluate the
explanation performance under differentK settings, starting
from K = 15 for Mutag and NCI1.

4.2. Experimental Results

In what follows, we summarize the results of our experimen-
tal results and discuss our key findings. The explanation
accuracy for synthetic datasets and real-world datasets in

house

K=5 K=6 K=7

Gem

  

PGExplainer

GNNExplainer

Figure 4. Explanation comparisons on BA-shapes. The “house” in
green is the ground-truth motif that determines the node labels.
The red node is the target node to be explained (better seen in
color).

different K settings are reported in Table 1 and Table 2,
respectively. As shown in Table 1, Gem consistently offers
the best explanation accuracy in overall cases. In partic-
ular, Gem achieves 30% improvement when K = 5 on
BA-shapes, compared with GNNExplainer. By looking at
the explanations for a target node, shown in Figure 4, Gem
can successfully identify the “house” motif that explains
the node label (“middle-node” in red), when K = 6, while
the GNNExplainer wrongly attributes the prediction to a
node (in orange) that is out of the “house” motif. On Tree-
cycles, GNNExplainer failed to generate effective explana-
tions when K < 8, while Gem and PGExplainer achieves
favorable accuracy even when K = 6.

Note that, for the real-world datasets, there are no explicit
motifs (no ground truth motifs) for classification. PGEx-
plainer assumes NO2 or NH2 as the motifs for the mutagen
graphs and trains an MLP for model explanation with the
mutagen graphs including at least one of these two motifs.
For fair comparisons, we report the results of PGExplainer
following its setting reported in (Luo et al., 2020) and com-
pare them with the results of GNNExplainer and Gem when
explaining on mutagen graphs, indicated as PGExplainer-
0, GNNExplainer-0, and Gem-0 in Table 2. As GNNEx-
plainer and Gem can explain both classes in the dataset,
we report the results of explaining the entire test set us-
ing GNNExplainer and Gem (the 4-5th rows in Table 24).
For NCI1, PGExplainer fails to explain this dataset without
the motif assumption, therefore, we report the results of
GNNExplainer and Gem. In general, the results reported
successfully verify that our proposed Gem can generate
explanations that can consistently yield high explanation
accuracies over all datasets.

To further check the interpretability of the generated ex-

4The comparisons with PGExplainer on NCI1 were omitted as
it fails to explain on NCI1, indicated as “−” in Table 2 and Table 3.
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Figure 5. Explanation comparisons on Mutag. The explanation re-
sults of different methods are highlighted with black edges, where
the gray edges are regarded as unimportant components for the
prediction and are discarded by the explainers (better seen in color).
The probability under each graph/subgraph denotes the likelihood
of being classified into the “mutagenic” class, which is obtained by
feeding the associated graph/subgraph into the pre-trained GNN.

planations, we report the explanation results for Mutag in
Figure 5 (K = 15). The first column shows the initial
graphs and corresponding probabilities of being classified
as “mutagenic” class by the pre-trained GNN, while the
other columns report the explanation subgraphs. Associated
probabilities belonging to the “mutagenic” class based on
the pre-trained GNN are reported below the subgraphs.

In the first two cases (the first two rows), Gem can identify
the essential components — the aromatic group (carbon
ring) and NO2 — leading to their labels ( “mutagenic”).
Nevertheless, GNNExplainer either only recognizes the aro-
matic group (the first row) or NO2 group (the second row),
which is not sufficient to be classified into “mutagenic” class
by the pre-trained GNN. PGExplainer focuses on identify-
ing the pre-defined motifs — NO2 and NH2. In the first
two rows, we observe that PGExplainer can successfully
recognize the NO2 motifs. However, when its explanation
subgraphs are fed into the pre-trained GNN, the probabili-
ties of being classified into the correct class are quite low.
In the third row of Figure 5, we report an instance that be-
longs to the “mutagenic” class without NO2 or NH2 motifs.
Only Gem can recognize the essential components of clas-
sifying into “mutagenic.” Note that, a good explainer for a

Gem GNNExplainer PGExplainer
Method

10

5

0

5

10

15

Lo
g-

od
ds

 d
iff

er
en

ce

Figure 6. Log-odds difference comparisons on Mutag (more dense
distribution around 0 is better).

Table 3. Inference Time per Instance (ms).
DATASETS BA-SHAPES TREE-CYCLES MUTAG NCI1

GNNEXPLAINER 265.2 204.5 257.6 259.8
PGEXPLAINER 6.7 6.5 5.5 −

GEM 0.5 0.5 0.05 0.02

pre-trained GNN should be able to highlight the important
components that lead to its predictions for any instances. In
the last row of Figure 5, we report an instance that belongs
to the “non-mutagenic” class. Though there are no explicit
motifs for this class, Gem can successfully generate the ex-
planation, which can be recognized as the “non-mutagenic”
class by the target GNN, with a probability of 0.82.

To verify the effectiveness of Gem in a more statistical view,
we measure the resulting change in the pre-trained GNNs’
outcome by computing the difference (the initial graph and
the explanation subgraph with K = 15 for Mutag) in log
odds and investigate the distributions over the entire test
set. The result on the Mutag dataset is reported in Figure 6
(The definition of log-odds difference and more results on
other datasets are provided in Appendix B). We can observe
that Gem performs consistently better than GNNExplainer
and PGExplainer. Specifically, the log-odds difference of
Gem is more concentrated around 0, which indicates Gem
can well capture the most relevant subgraphs towards the
predictions by the pre-trained GNNs.

Computational performance. PGExplainer and Gem can
explain unseen instances in the inductive setting. We mea-
sure the average inference time for these two methods. As
GNNExplainer explains an instance at a time, we measure
its average time cost per explanation for comparisons. As
reported in Table 3, we can conclude that Gem consistently
explain faster than the baselines overall. Further experi-
ments on the efficiency evaluation, such as training time
comparisons, are provided in Appendix B.
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5. Other Related Work
Explanations seek the answers to the questions of “what
if” and “why,” which are arguably and inherently causal.
The theory of causal inference is one method by which
such questions might be answered (Pearl, 2009). Recently,
causal interpretability has gained increasing attention in
explaining machine learning models (Datta et al., 2016;
Narendra et al., 2018; Schwab & Karlen, 2019). There
are several viable formalisms of causality, such as Granger
causality (Granger, 1969), causal Bayesian networks (Pearl,
1985), and structural causal models (Pearl, 2009).

Prior works of this research line usually are designed to ex-
plain the importance of each component of a neural network
on its prediction. Chattopadhyay et al. (Chattopadhyay et al.,
2019) proposed an attribution method based on the first prin-
ciples of causality, particularly the Structural Causal Model
and do(·) calculus. Schwab et al. (Schwab & Karlen, 2019)
framed the explanation task for deep learning models on
images as a causal learning task, and proposed a causal
explanation model that can learn to estimate the feature im-
portance towards its prediction. Schwab et al.’s proposal
is built upon the notion of Granger causality. While such
methods can provide meaningful explanations for deep mod-
els on images, they cannot be directly applied to interpret
graph neural networks, due to the inherent property of graph
representations.

6. Conclusion
In sum, we devised a new framework Gem for explaining
graph neural networks that use the first principles of Granger
causality. Gem has several advantages over existing work:
it is model-agnostic, compatible with any graph neural net-
work models without any prior assumptions on the graph
learning tasks, can generate compact subgraphs, causing the
outputs of the pre-trained GNNs very quickly after train-
ing. We show that causal interpretability could contribute to
explaining and understanding graph neural networks. We
believe this could be a fruitful avenue of future research that
helps better understand and design graph neural networks.
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