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We aim to uncover the veil of the GNN 
by interpreting its predictions.
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Problem 
‣ Given: a pre-trained GNN for classification, an instance 

(an input graph) from the data distribution. 

‣ Objective: to obtain an explanation mechanism that can 
identify the most relevant part of the input (a compact 
subgraph), causing the prediction of the GNN.
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Related work
‣ GNNExplainer (NeurIPS 2019): explains each instance 

separately.  

‣ PGExplainer (NeurIPS 2020): trains a multilayer-
perceptron (MLP) to provide explanations.
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Our solution
‣ We propose to train a graph generator as an explainer — 

the input is a graph, and the output is the explanatory 
subgraph structure. 

‣ Once trained, it can be used to explain any input graph 
with little time. 

‣ Our explainer is model-agnostic — does not need to 
know the internal structure of the target GNN.
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What is the supervision signal for 
training our explanation model?
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Our solution (Cont.)
‣ We propose a graph distillation mechanism that can extract 

the most relevant part of the graph leading to the predictions 
of the target GNN.  

‣ We quantify the edge importance with the notion of 
Granger causality — In the graph domain, if the absence 
of an edge decreases the ability to predict Y, then there is 
a causal relationship between this edge and its 
corresponding prediction.  

‣ With the importance quantification, we can extract the 
top-K most important edges as the explanatory subgraph.
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Our solution (Cont.)
‣  The causal contribution of the edge    is defined as the 

decrease in model error, formulated as: 

 

‣ Incorporate graph rules: such connectivity checking, etc.

ej

Δδ, ej = δGc∖{ej} − δGc
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Our framework Gem
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Experiments
‣ Baselines: GNNExplainer (NeurIPS 2019) and PGExplainer 

(NeurIPS 2020) 

‣ Benchmarking datasets:  

‣ Graph classification tasks: MUTAG and NCI1 

‣ Node classification tasks: BA-shapes and Tree-cycles
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Explanation accuracy
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Visualization
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Explanation time
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https://github.com/wanyu-lin/ICML2021-Gem
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