Generative Causal Explanations for Graph Neural Networks

Wanyu Lin, Hao Lan, Baochun Li The Hong Kong Polytechnic University, University of Toronto

Cellular interaction graphs

Protein-protein interaction graph

We aim to uncover the veil of the GNN by interpreting its predictions.

Problem

- Given: a pre-trained GNN for classification, an instance (an input graph) from the data distribution.
- Objective: to obtain an explanation mechanism that can identify the most relevant part of the input (a compact subgraph), causing the prediction of the GNN.

[1] Debnath, A. K., Lopez de Compadre, R. L., Debnath, G., Shusterman, A. J., and Hansch, C. Structure-Activity Relationship of Mutagenic Aromatic and Heteroaromatic Nitro Compounds. Correlation with Molecular Orbital En- ergies and Hydrophobicity. Journal of Medicinal Chem- istry, 34(2):786–797, 1991

Related work

- GNNExplainer (NeurIPS 2019): explains each instance separately.
- PGExplainer (NeurIPS 2020): trains a multilayerperceptron (MLP) to provide explanations.

Our solution

- We propose to train a graph generator as an explainer the input is a graph, and the output is the explanatory subgraph structure.
 - Once trained, it can be used to explain any input graph with little time.
 - Our explainer is model-agnostic does not need to know the internal structure of the target GNN.

What is the supervision signal for training our explanation model?

Our solution (Cont.)

- We propose a graph distillation mechanism that can extract the most relevant part of the graph leading to the predictions of the target GNN.
 - We quantify the edge importance with the notion of Granger causality — In the graph domain, if the absence of an edge decreases the ability to predict Y, then there is a causal relationship between this edge and its corresponding prediction.
 - With the importance quantification, we can extract the top-K most important edges as the explanatory subgraph.

Our solution (Cont.)

• The causal contribution of the edge e_j is defined as the decrease in model error, formulated as:

$$\Delta_{\delta,e_j} = \delta_{G^c \setminus \{e_j\}} - \delta_{G^c}$$

Incorporate graph rules: such connectivity checking, etc.

Our framework Gem

Experiments

- Baselines: GNNExplainer (NeurIPS 2019) and PGExplainer (NeurIPS 2020)
- Benchmarking datasets:
 - Graph classification tasks: MUTAG and NCI1
 - Node classification tasks: BA-shapes and Tree-cycles

Explanation accuracy

Table 1. Explanation Accuracy on Synthetic Datasets (%).

	BA-SHAPES					TREE-CYCLES				
K	5	6	7	8	9	6	7	8	9	10
Gem	93.4	97.1	97.1	97.1	99.3	86.1	87.5	92.5	93.9	95.4
GNNExplainer	82.4	88.2	91.2	91.2	94.1	14.3	46.8	74.6	91.4	96.1
PGExplainer	71.9	90.7	92.0	93.3	94.1	94.4	80.6	77.0	82.4	89.4

Table 2. Explanation Accuracy on Real-World Datasets (%).

	MUTAG			NCI1				
K	15	20	25	30	15	20	25	30
Gem-0	64.0	78.1	81.0	85.0	—	_	_	_
GNNExplainer-0	60.0	67.6	68.9	75.8	_	—	_	—
PGExplainer-0	22.5	38.5	57.6	72.3	_	_	_	_
Gem	66.3	78.0	82.1	83.4	56.9	65.3	68.9	72.8
GNNExplainer	67.1	74.9	75.8	80.9	59.3	61.8	69.6	72.0

Visualization ²

Explanation time

Table 3. Inference Time per Instance (ms).

DATASETS	BA-SHAPES	TREE-CYCLES	MUTAG	NCI1
GNNEXPLAINER PGEXPLAINER GEM	$265.2 \\ 6.7 \\ 0.5$	$ \begin{array}{c} 204.5 \\ 6.5 \\ 0.5 \end{array} $	$\begin{array}{c c} 257.6 \\ 5.5 \\ 0.05 \end{array}$	259.8 - 0.02

https://github.com/wanyu-lin/ICML2021-Gem

Department of Computing 電子計算學系